Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #12 Sep 08 2022 08:45:40
%S 2,1,1,1,-2,1,1,-1,-1,1,1,-12,22,-12,1,1,14,-15,-15,14,1,1,-135,359,
%T -450,359,-135,1,1,699,-1589,889,889,-1589,699,1,1,-5068,13390,-15092,
%U 13538,-15092,13390,-5068,1,1,40284,-109038,113588,-44835,-44835,113588,-109038,40284,1
%N Triangular array, T(n,k) = s(n,k) + s(n,n-k), where s(n,k) are the Stirling numbers of the first kind.
%C Except for the first two rows the row sums are zero.
%H G. C. Greubel, <a href="/A154843/b154843.txt">Rows n = 0..100 of triangle, flattened</a>
%F T(n,k) = s(n, k) + s(n, n - k), where s(n,k) are the Stirling numbers of the first kind (A048994).
%e Triangle begins as:
%e 2;
%e 1, 1;
%e 1, -2, 1;
%e 1, -1, -1, 1;
%e 1, -12, 22, -12, 1;
%e 1, 14, -15, -15, 14, 1;
%e 1, -135, 359, -450, 359, -135, 1;
%e 1, 699, -1589, 889, 889, -1589, 699, 1;
%e 1, -5068, 13390, -15092, 13538, -15092, 13390, -5068, 1;
%t Table[StirlingS1[n, k] +StirlingS1[n, n-k], {n,0,10}, {k,0,n} ]//Flatten (* modified by _G. C. Greubel_, Apr 07 2019 *)
%o (PARI) {T(n,k) = stirling(n,k,1) + stirling(n,n-k,1)}; \\ _G. C. Greubel_, Apr 07 2019
%o (Magma) [[StirlingFirst(n,k) + StirlingFirst(n,n-k): k in [0..n]]: n in [0..10]]; // _G. C. Greubel_, Apr 07 2019
%o (Sage) [[(-1)^(n-k)*(stirling_number1(n,k) + (-1)^n*stirling_number1(n,n-k)) for k in (0..n)] for n in (0..10)] # _G. C. Greubel_, Apr 07 2019
%Y Cf. A048994.
%K tabl,sign
%O 0,1
%A _Roger L. Bagula_, Jan 16 2009