login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A360618
Expansion of Sum_{k>=0} (k * x * (1 + k*x))^k.
7
1, 1, 5, 43, 515, 7950, 150086, 3349945, 86296849, 2519907605, 82249222661, 2967449372028, 117266100841668, 5037282382077353, 233701540415817409, 11645959855678136519, 620389246928233860127, 35181554115178393462386, 2116059351692554708911298
OFFSET
0,3
LINKS
FORMULA
a(n) = Sum_{k=0..floor(n/2)} (n-k)^n * binomial(n-k,k).
a(n) ~ c * d^n * n^n, where d = (1-r)^(2-r) / (r^r * (1-2*r)^(1-2*r)) where r = 0.163662210494891118101893756356803907477984542... is the root of the equation (1-2*r)^2 = r*(1-r) * exp(1/(1-r)) and c = 0.78619174295244329885973980954744130517052330684023764340463604028671858569... - Vaclav Kotesovec, Feb 14 2023
MATHEMATICA
Flatten[{1, Table[Sum[Binomial[n-k, k] * (n-k)^n, {k, 0, n/2}], {n, 1, 20}]}] (* Vaclav Kotesovec, Feb 14 2023 *)
PROG
(PARI) my(N=20, x='x+O('x^N)); Vec(sum(k=0, N, (k*x*(1+k*x))^k))
(PARI) a(n) = sum(k=0, n\2, (n-k)^n*binomial(n-k, k));
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Feb 14 2023
STATUS
approved