login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A299425
E.g.f. A(x) satisfies: 1 - x = Sum_{n>=0} (Integral -A(x)^n dx)^n / n!.
1
1, 1, 5, 43, 514, 7778, 141427, 2990741, 71982197, 1943318293, 58274530808, 1928170445532, 70050754418969, 2781721368620685, 120104488614903489, 5601368827311472211, 280010977440133986954, 14884513825530929143826, 835402492859596917623243, 49259935601350475622014329, 3045801421611820426020858069
OFFSET
0,3
LINKS
FORMULA
E.g.f. A(x) satisfies:
(1) 1 - x = Sum_{n>=0} (Integral -A(x)^n dx)^n / n!.
(2) 1 = Sum_{n>=0} A(x)^(n+1) * (Integral -A(x)^(n+1) dx)^n / n!.
EXAMPLE
E.g.f.: A(x) = 1 + x + 5*x^2/2! + 43*x^3/3! + 514*x^4/4! + 7778*x^5/5! + 141427*x^6/6! + 2990741*x^7/7! + 71982197*x^8/8! + 1943318293*x^9/9! + 58274530808*x^10/10! + ...
such that
1 - x = 1 - (Integral A(x) dx) + (Integral A(x)^2 dx)^2/2! - (Integral A(x)^3 dx)^3/3! + (Integral A(x)^4 dx)^4/4! - (Integral A(x)^5 dx)^5/5! + ...
also
1 = A(x) - A(x)^2*(Integral A(x)^2 dx) + A(x)^3*(Integral A(x)^3 dx)^2/2! - A(x)^4*(Integral A(x)^4 dx)^3/3! + A(x)^5*(Integral A(x)^5 dx)^4/4! + ...
Related series.
A'(x) = F(x)/G(x) where
F(x) = Sum_{n>=0} A(x)^(2*n+4) * (Integral -A(x)^(n+2) dx)^n / n! and
G(x) = Sum_{n>=0} (n+1) * A(x)^n * (Integral -A(x)^(n+1) dx)^n / n!.
PROG
(PARI) {a(n) = my(A=1); for(i=1, n, A = 1 - sum(m=1, n, A^(m+1) * intformal( -A^(m+1) +x*O(x^n) )^m/m!)); n!*polcoeff(A, n)}
for(n=0, 20, print1(a(n), ", "))
(PARI) {a(n) = my(A=[1]); for(i=1, n, A=concat(A, 0); A[#A] = -Vec( sum(m=0, #A+1, intformal( -Ser(A)^(m+1) )^m/m! * Ser(A)^(m+1)) )[#A] ); n!*A[n+1]}
for(n=0, 20, print1(a(n), ", "))
CROSSREFS
Sequence in context: A188365 A107720 A362188 * A360618 A060053 A227176
KEYWORD
sign
AUTHOR
Paul D. Hanna, Feb 15 2018
STATUS
approved