login
A347044
Greatest divisor of n with half (rounded up) as many prime factors (counting multiplicity) as n.
22
1, 2, 3, 2, 5, 3, 7, 4, 3, 5, 11, 6, 13, 7, 5, 4, 17, 9, 19, 10, 7, 11, 23, 6, 5, 13, 9, 14, 29, 15, 31, 8, 11, 17, 7, 9, 37, 19, 13, 10, 41, 21, 43, 22, 15, 23, 47, 12, 7, 25, 17, 26, 53, 9, 11, 14, 19, 29, 59, 15, 61, 31, 21, 8, 13, 33, 67, 34, 23, 35, 71
OFFSET
1,2
COMMENTS
Appears to contain each positive integer at least once, but only a finite number of times.
LINKS
FORMULA
a(n) = Product_{k=floor(A001222(n)/2)+1..A001222(n)} A027746(n,k). - Amiram Eldar, Nov 02 2024
EXAMPLE
The divisors of 123456 with half bigomega are: 16, 24, 5144, 7716, so a(123456) = 7716.
MATHEMATICA
Table[Max[Select[Divisors[n], PrimeOmega[#]==Ceiling[PrimeOmega[n]/2]&]], {n, 100}]
a[n_] := Module[{p = Flatten[Table[#[[1]], {#[[2]]}] & /@ FactorInteger[n]], np}, np = Length[p]; Times @@ p[[Floor[np/2] + 1;; np]]]; Array[a, 100] (* Amiram Eldar, Nov 02 2024 *)
PROG
(Python)
from sympy import divisors, factorint
def a(n):
npf = len(factorint(n, multiple=True))
for d in divisors(n)[::-1]:
if len(factorint(d, multiple=True)) == (npf+1)//2: return d
return 1
print([a(n) for n in range(1, 72)]) # Michael S. Branicky, Aug 18 2021
(Python 3.8+)
from math import prod
from sympy import factorint
def A347044(n):
fs = factorint(n, multiple=True)
l = len(fs)
return prod(fs[l//2:]) # Chai Wah Wu, Aug 20 2021
CROSSREFS
The greatest divisor without the condition is A006530 (smallest: A020639).
Divisors of this type are counted by A096825 (exact: A345957).
The case of powers of 2 is A163403.
The smallest divisor of this type is given by A347043 (exact: A347045).
The exact version is A347046.
A000005 counts divisors.
A001221 counts distinct prime factors.
A001222 counts all prime factors (also called bigomega).
A038548 counts inferior (or superior) divisors (strict: A056924).
A056239 adds up prime indices, row sums of A112798.
A207375 lists central divisors (min: A033676, max: A033677).
A340387 lists numbers whose sum of prime indices is twice bigomega.
A340609 lists numbers whose maximum prime index divides bigomega.
A340610 lists numbers whose maximum prime index is divisible by bigomega.
A347042 counts divisors d|n such that bigomega(d) divides bigomega(n).
Sequence in context: A116548 A348582 A346701 * A117818 A363627 A073890
KEYWORD
nonn
AUTHOR
Gus Wiseman, Aug 16 2021
STATUS
approved