login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A347041
Stirling transform of pi (A000720).
1
0, 0, 1, 5, 21, 88, 389, 1852, 9525, 52632, 310141, 1936489, 12749204, 88149847, 637769490, 4812457992, 37763509549, 307453610201, 2592851608305, 22626572045811, 204197274002794, 1905132039608335, 18370391387293756, 183001650861913887, 1882207129695280320
OFFSET
0,4
LINKS
FORMULA
G.f.: Sum_{k>=0} pi(k)*x^k / Product_{j=1..k} (1-j*x).
E.g.f.: Sum_{k>=0} pi(k)*(exp(x)-1)^k/k!.
a(n) = Sum_{k=0..n} Stirling2(n,k)*pi(k).
MAPLE
b:= proc(n, m) option remember; `if`(n=0,
numtheory[pi](m), m*b(n-1, m)+b(n-1, m+1))
end:
a:= n-> b(n, 0):
seq(a(n), n=0..27);
CROSSREFS
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Aug 13 2021
STATUS
approved