login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Stirling transform of pi (A000720).
1

%I #10 Aug 13 2021 12:49:42

%S 0,0,1,5,21,88,389,1852,9525,52632,310141,1936489,12749204,88149847,

%T 637769490,4812457992,37763509549,307453610201,2592851608305,

%U 22626572045811,204197274002794,1905132039608335,18370391387293756,183001650861913887,1882207129695280320

%N Stirling transform of pi (A000720).

%H Alois P. Heinz, <a href="/A347041/b347041.txt">Table of n, a(n) for n = 0..575</a>

%F G.f.: Sum_{k>=0} pi(k)*x^k / Product_{j=1..k} (1-j*x).

%F E.g.f.: Sum_{k>=0} pi(k)*(exp(x)-1)^k/k!.

%F a(n) = Sum_{k=0..n} Stirling2(n,k)*pi(k).

%p b:= proc(n, m) option remember; `if`(n=0,

%p numtheory[pi](m), m*b(n-1, m)+b(n-1, m+1))

%p end:

%p a:= n-> b(n, 0):

%p seq(a(n), n=0..27);

%Y Cf. A000720, A008277, A048993, A230980, A307771.

%K nonn

%O 0,4

%A _Alois P. Heinz_, Aug 13 2021