The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A163403 a(n) = 2*a(n-2) for n > 2; a(1) = 1, a(2) = 2. 27
1, 2, 2, 4, 4, 8, 8, 16, 16, 32, 32, 64, 64, 128, 128, 256, 256, 512, 512, 1024, 1024, 2048, 2048, 4096, 4096, 8192, 8192, 16384, 16384, 32768, 32768, 65536, 65536, 131072, 131072, 262144, 262144, 524288, 524288, 1048576, 1048576, 2097152, 2097152 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,2
COMMENTS
a(n+1) is the number of palindromic words of length n using a two-letter alphabet. - Michael Somos, Mar 20 2011
LINKS
FORMULA
a(n) = 2^((1/4)*(2*n - 1 + (-1)^n)).
G.f.: x*(1 + 2*x)/(1 - 2*x^2).
a(n) = A051032(n) - 1.
G.f.: x / (1 - 2*x / (1 + x / (1 + x))) = x * (1 + 2*x / (1 - x / (1 - x / (1 + 2*x)))). - Michael Somos, Jan 03 2013
From R. J. Mathar, Aug 06 2009: (Start)
a(n) = A131572(n).
a(n) = A060546(n-1), n > 1. (End)
a(n+3) = a(n+2)*a(n+1)/a(n). - Reinhard Zumkeller, Mar 04 2011
a(n) = |A009116(n-1)| + |A009545(n-1)|. - Bruno Berselli, May 30 2011
E.g.f.: cosh(sqrt(2)*x) + sinh(sqrt(2)*x)/sqrt(2) - 1. - Stefano Spezia, Feb 05 2023
EXAMPLE
x + 2*x^2 + 2*x^3 + 4*x^4 + 4*x^5 + 8*x^6 + 8*x^7 + 16*x^8 + 16*x^9 + 32*x^10 + ...
MATHEMATICA
LinearRecurrence[{0, 2}, {1, 2}, 50] (* Paolo Xausa, Feb 02 2024 *)
PROG
(Magma) [ n le 2 select n else 2*Self(n-2): n in [1..43] ];
(PARI) {a(n) = if( n<1, 0, 2^(n\2))} /* Michael Somos, Mar 20 2011 */
(Sage)
def A163403():
x, y = 1, 1
while True:
yield x
x, y = x + y, x - y
a = A163403(); [next(a) for i in range(40)] # Peter Luschny, Jul 11 2013
CROSSREFS
Equals A016116 without initial 1. Unsigned version of A152166.
Partial sums are in A136252.
Binomial transform is A078057, second binomial transform is A007070, third binomial transform is A102285, fourth binomial transform is A163350, fifth binomial transform is A163346.
Cf. A000079 (powers of 2), A009116, A009545, A051032.
The following sequences are all essentially the same, in the sense that they are simple transformations of each other, with A029744 = {s(n), n>=1}, the numbers 2^k and 3*2^k, as the parent: A029744 (s(n)); A052955 (s(n)-1), A027383 (s(n)-2), A354788 (s(n)-3), A347789 (s(n)-4), A209721 (s(n)+1), A209722 (s(n)+2), A343177 (s(n)+3), A209723 (s(n)+4); A060482, A136252 (minor differences from A354788 at the start); A354785 (3*s(n)), A354789 (3*s(n)-7). The first differences of A029744 are 1,1,1,2,2,4,4,8,8,... which essentially matches eight sequences: A016116, A060546, A117575, A131572, A152166, A158780, A163403, A320770. The bisections of A029744 are A000079 and A007283. - N. J. A. Sloane, Jul 14 2022
Sequence in context: A320770 A016116 A060546 * A158780 A231208 A306663
KEYWORD
nonn,easy
AUTHOR
Klaus Brockhaus, Jul 26 2009
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 19 14:45 EDT 2024. Contains 372698 sequences. (Running on oeis4.)