login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A163403 a(n) = 2*a(n-2) for n > 2; a(1) = 1, a(2) = 2. 27
1, 2, 2, 4, 4, 8, 8, 16, 16, 32, 32, 64, 64, 128, 128, 256, 256, 512, 512, 1024, 1024, 2048, 2048, 4096, 4096, 8192, 8192, 16384, 16384, 32768, 32768, 65536, 65536, 131072, 131072, 262144, 262144, 524288, 524288, 1048576, 1048576, 2097152, 2097152 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

a(n+1) is the number of palindromic words of length n using a two-letter alphabet. - Michael Somos, Mar 20 2011

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 1..1000

FORMULA

a(n) = 2^(1/4*(2*n-1+(-1)^n)).

G.f.: x*(1+2*x)/(1-2*x^2).

G.f.: x / (1 - 2*x / (1 + x / (1 + x))) = x * (1 + 2*x / (1 - x / (1 - x / (1 + 2*x)))). - Michael Somos, Jan 03 2013

From R. J. Mathar, Aug 06 2009: (Start)

a(n) = A131572(n).

a(n) = A060546(n-1), n > 1. (End)

a(n+3) = a(n+2)*a(n+1)/a(n). - Reinhard Zumkeller, Mar 04 2011

a(n) = |A009116(n-1)| + |A009545(n-1)|. - Bruno Berselli, May 30 2011

EXAMPLE

x + 2*x^2 + 2*x^3 + 4*x^4 + 4*x^5 + 8*x^6 + 8*x^7 + 16*x^8 + 16*x^9 + 32*x^10 + ...

PROG

(Magma) [ n le 2 select n else 2*Self(n-2): n in [1..43] ];

(PARI) {a(n) = if( n<1, 0, 2^(n\2))} /* Michael Somos, Mar 20 2011 */

(Sage)

def A163403():

x, y = 1, 1

while True:

yield x

x, y = x + y, x - y

a = A163403(); [next(a) for i in range(40)] # Peter Luschny, Jul 11 2013

CROSSREFS

Equals A016116 without initial 1. Unsigned version of A152166.

Partial sums are in A136252. a(n) = A051032(n)-1.

Binomial transform is A078057, second binomial transform is A007070, third binomial transform is A102285, fourth binomial transform is A163350, fifth binomial transform is A163346.

Cf. A000079 (powers of 2), A136252, A051032.

The following sequences are all essentially the same, in the sense that they are simple transformations of each other, with A029744 = {s(n), n>=1}, the numbers 2^k and 3*2^k, as the parent: A029744 (s(n)); A052955 (s(n)-1), A027383 (s(n)-2), A354788 (s(n)-3), A347789 (s(n)-4), A209721 (s(n)+1), A209722 (s(n)+2), A343177 (s(n)+3), A209723 (s(n)+4); A060482, A136252 (minor differences from A354788 at the start); A354785 (3*s(n)), A354789 (3*s(n)-7). The first differences of A029744 are 1,1,1,2,2,4,4,8,8,... which essentially matches eight sequences: A016116, A060546, A117575, A131572, A152166, A158780, A163403, A320770. The bisections of A029744 are A000079 and A007283. - N. J. A. Sloane, Jul 14 2022

Sequence in context: A320770 A016116 A060546 * A231208 A306663 A222955

Adjacent sequences: A163400 A163401 A163402 * A163404 A163405 A163406

KEYWORD

nonn

AUTHOR

Klaus Brockhaus, Jul 26 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 6 10:23 EST 2022. Contains 358630 sequences. (Running on oeis4.)