login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A209722
1/4 the number of (n+1) X 4 0..2 arrays with every 2 X 2 subblock having distinct clockwise edge differences.
21
4, 5, 6, 8, 10, 14, 18, 26, 34, 50, 66, 98, 130, 194, 258, 386, 514, 770, 1026, 1538, 2050, 3074, 4098, 6146, 8194, 12290, 16386, 24578, 32770, 49154, 65538, 98306, 131074, 196610, 262146, 393218, 524290, 786434, 1048578, 1572866, 2097154, 3145730
OFFSET
1,1
COMMENTS
Column 3 of A209727.
LINKS
FORMULA
Empirical: a(n) = a(n-1) + 2*a(n-2) - 2*a(n-3).
Conjectures from Colin Barker, Jul 12 2018: (Start)
G.f.: x*(4 + x - 7*x^2) / ((1 - x)*(1 - 2*x^2)).
a(n) = 3*2^(n/2 - 1) + 2 for n even.
a(n) = 2^((n + 1)/2) + 2 for n odd.
(End)
EXAMPLE
Some solutions for n=4:
..2..1..2..1....2..1..2..1....1..2..1..2....1..0..2..0....2..1..2..1
..0..2..0..2....0..2..0..2....2..0..2..0....0..2..1..2....0..2..0..2
..2..1..2..1....1..0..1..0....0..1..0..1....1..0..2..0....1..0..1..0
..0..2..0..2....0..2..0..2....2..0..2..0....0..2..1..2....0..2..0..2
..2..1..2..1....2..1..2..1....0..1..0..1....1..0..2..0....1..0..1..0
CROSSREFS
Cf. A209727.
The following sequences are all essentially the same, in the sense that they are simple transformations of each other, with A029744 = {s(n), n>=1}, the numbers 2^k and 3*2^k, as the parent: A029744 (s(n)); A052955 (s(n)-1), A027383 (s(n)-2), A354788 (s(n)-3), A347789 (s(n)-4), A209721 (s(n)+1), A209722 (s(n)+2), A343177 (s(n)+3), A209723 (s(n)+4); A060482, A136252 (minor differences from A354788 at the start); A354785 (3*s(n)), A354789 (3*s(n)-7). The first differences of A029744 are 1,1,1,2,2,4,4,8,8,... which essentially matches eight sequences: A016116, A060546, A117575, A131572, A152166, A158780, A163403, A320770. The bisections of A029744 are A000079 and A007283. - N. J. A. Sloane, Jul 14 2022
Sequence in context: A277736 A287358 A035065 * A035067 A027698 A047313
KEYWORD
nonn
AUTHOR
R. H. Hardin, Mar 12 2012
STATUS
approved