login
A047313
Numbers that are congruent to {1, 4, 5, 6} mod 7.
1
1, 4, 5, 6, 8, 11, 12, 13, 15, 18, 19, 20, 22, 25, 26, 27, 29, 32, 33, 34, 36, 39, 40, 41, 43, 46, 47, 48, 50, 53, 54, 55, 57, 60, 61, 62, 64, 67, 68, 69, 71, 74, 75, 76, 78, 81, 82, 83, 85, 88, 89, 90, 92, 95, 96, 97, 99, 102, 103, 104, 106, 109, 110, 111
OFFSET
1,2
FORMULA
G.f.: x*(1+3*x+x^2+x^3+x^4) / ( (1+x)*(1+x^2)*(x-1)^2 ). - R. J. Mathar, Dec 03 2011
From Wesley Ivan Hurt, May 23 2016: (Start)
a(n) = a(n-1) + a(n-4) - a(n-5) for n>5.
a(n) = (14n-3+i^(2n)-(3+i)*i^(-n)-(3-i)*i^n)/8 where i=sqrt(-1).
a(2n) = A047288(n), a(2n-1) = A047383(n). (End)
E.g.f.: (4 - sin(x) - 3*cos(x) + (7*x - 2)*sinh(x) + (7*x - 1)*cosh(x))/4. - Ilya Gutkovskiy, May 24 2016
MAPLE
A047313:= n-> iquo(n-1, 4, 'r')*7 +[1, 4, 5, 6][r+1]: seq(A047313(n), n=1..80); # Alois P. Heinz, Dec 04 2011
MATHEMATICA
Select[Range[100], MemberQ[{1, 4, 5, 6}, Mod[#, 7]]&] (* Harvey P. Dale, Apr 17 2011 *)
LinearRecurrence[{1, 0, 0, 1, -1}, {1, 4, 5, 6, 8}, 80] (* Jean-François Alcover, Feb 18 2016 *)
PROG
(Magma) [n : n in [0..150] | n mod 7 in [1, 4, 5, 6]]; // Wesley Ivan Hurt, May 23 2016
CROSSREFS
Sequence in context: A209722 A035067 A027698 * A030343 A030590 A047430
KEYWORD
nonn,easy
STATUS
approved