login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A047310
Numbers that are congruent to {0, 1, 3, 4, 5, 6} mod 7.
1
0, 1, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 14, 15, 17, 18, 19, 20, 21, 22, 24, 25, 26, 27, 28, 29, 31, 32, 33, 34, 35, 36, 38, 39, 40, 41, 42, 43, 45, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 59, 60, 61, 62, 63, 64, 66, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78
OFFSET
1,3
COMMENTS
Complement of A017005. - Michel Marcus, Sep 08 2015
FORMULA
G.f.: x^2*(1+2*x+x^2+x^3+x^4+x^5) / ( (1+x)*(1+x+x^2)*(x^2-x+1)*(x-1)^2 ). - R. J. Mathar, Oct 25 2011
From Wesley Ivan Hurt, Sep 08 2015: (Start)
a(n) = a(n-1)+a(n-6)-a(n-7) for n>7.
a(n) = n + floor((n-3)/6). (End)
From Wesley Ivan Hurt, Jun 15 2016: (Start)
a(n) = (42*n-33-3*cos(n*Pi)+4*sqrt(3)*cos((1-4*n)*Pi/6)-12*sin((1+2*n)*Pi/6))/36.
a(6k) = 7k-1, a(6k-1) = 7k-2, a(6k-2) = 7k-3, a(6k-3) = 7k-4, a(6k-4) = 7k-6, a(6k-5) = 7k-7. (End)
MAPLE
A047310:=n->n+floor((n-3)/6): seq(A047310(n), n=1..100); # Wesley Ivan Hurt, Sep 08 2015
MATHEMATICA
Table[n+Floor[(n-3)/6], {n, 100}] (* Wesley Ivan Hurt, Sep 08 2015 *)
LinearRecurrence[{1, 0, 0, 0, 0, 1, -1}, {0, 1, 3, 4, 5, 6, 7}, 70] (* Vincenzo Librandi, Sep 10 2015 *)
Select[Range[0, 100], MemberQ[{0, 1, 3, 4, 5, 6}, Mod[#, 7]]&] (* Harvey P. Dale, Dec 02 2024 *)
PROG
(Magma) [n+Floor((n-3)/6): n in [1..100]]; // Wesley Ivan Hurt, Sep 08 2015
(Magma) [n: n in [0..100] | n mod 7 in [0, 1, 3, 4, 5, 6]]; // Vincenzo Librandi, Sep 10 2015
CROSSREFS
Cf. A017005 (7n+2).
Sequence in context: A116587 A057903 A247833 * A184530 A304804 A359776
KEYWORD
nonn,easy,changed
EXTENSIONS
More terms from Vincenzo Librandi, Sep 10 2015
STATUS
approved