OFFSET
1,3
COMMENTS
Complement of A017005. - Michel Marcus, Sep 08 2015
LINKS
Index entries for linear recurrences with constant coefficients, signature (1,0,0,0,0,1,-1)
FORMULA
G.f.: x^2*(1+2*x+x^2+x^3+x^4+x^5) / ( (1+x)*(1+x+x^2)*(x^2-x+1)*(x-1)^2 ). - R. J. Mathar, Oct 25 2011
From Wesley Ivan Hurt, Sep 08 2015: (Start)
a(n) = a(n-1)+a(n-6)-a(n-7) for n>7.
a(n) = n + floor((n-3)/6). (End)
From Wesley Ivan Hurt, Jun 15 2016: (Start)
a(n) = (42*n-33-3*cos(n*Pi)+4*sqrt(3)*cos((1-4*n)*Pi/6)-12*sin((1+2*n)*Pi/6))/36.
a(6k) = 7k-1, a(6k-1) = 7k-2, a(6k-2) = 7k-3, a(6k-3) = 7k-4, a(6k-4) = 7k-6, a(6k-5) = 7k-7. (End)
MAPLE
MATHEMATICA
Table[n+Floor[(n-3)/6], {n, 100}] (* Wesley Ivan Hurt, Sep 08 2015 *)
LinearRecurrence[{1, 0, 0, 0, 0, 1, -1}, {0, 1, 3, 4, 5, 6, 7}, 70] (* Vincenzo Librandi, Sep 10 2015 *)
Select[Range[0, 100], MemberQ[{0, 1, 3, 4, 5, 6}, Mod[#, 7]]&] (* Harvey P. Dale, Dec 02 2024 *)
PROG
(Magma) [n+Floor((n-3)/6): n in [1..100]]; // Wesley Ivan Hurt, Sep 08 2015
(Magma) [n: n in [0..100] | n mod 7 in [0, 1, 3, 4, 5, 6]]; // Vincenzo Librandi, Sep 10 2015
CROSSREFS
KEYWORD
nonn,easy,changed
AUTHOR
EXTENSIONS
More terms from Vincenzo Librandi, Sep 10 2015
STATUS
approved