OFFSET
0,4
COMMENTS
REFERENCES
Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, p. 19.
LINKS
Clark Kimberling, Table of n, a(n) for n = 0..1000
EXAMPLE
Approximations for the first few terms of u - Pi, Pi - v, and 1/5^n are shown here:
n ... u(n) - Pi ... Pi - v(n) ... 1/5^n
0 ... 0.322509 .... 0.1415930 ... 1
1 ... 0.0737977 ... 0.035764 .... 0.2
2 ... 0.0180673 ... 0.008964 .... 0.04
3 ... 0.00449356 .. 0.002242 .... 0.008
4 ... 0.00112195 .. 0.000560 .... 0.0016
5 ... 0.00028039 .. 0.000140 .... 0.00032
6 ... 0.00007009 .. 0.000035 .... 0.000064
7 ... 0.00001752 .. 0.000008 .... 0.0000128
a(3) = 3 because v(3) < 1/5^3 < v(2).
MATHEMATICA
$RecursionLimit = 1000; z = 200; u[0] = N[2*Sqrt[3], 100]; v[0] = 3;
u[n_] := u[n] = 2*u[n - 1]*v[n - 1]/(u[n - 1] + v[n - 1]); v[n_] := v[n] =
Sqrt[u[n]*v[n - 1]]; f[n_] := f[n] = Select[Range[z], u[#] - Pi < 5^(-n) &, 1];
Flatten[Table[f[n], {n, 0, z}]] (* A247832 *)
g[n_] := g[n] = Select[Range[z], Pi - v[#] < 5^(-n) &, 1]
Flatten[Table[g[n], {n, 0, z}]] (* A247833 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Sep 26 2014
STATUS
approved