login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A247832
Least number k such that u(k) - Pi < 1/5^n, where u is defined using the Borchardt-Pfaff algorithm; see Comments.
2
1, 1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 12, 14, 15, 16, 17, 18, 19, 20, 22, 23, 24, 25, 26, 27, 29, 30, 31, 32, 33, 34, 36, 37, 38, 39, 40, 41, 43, 44, 45, 46, 47, 48, 50, 51, 52, 53, 54, 55, 56, 58, 59, 60, 61, 62, 63, 65, 66, 67, 68, 69, 70, 72, 73, 74, 75, 76
OFFSET
0,3
COMMENTS
The sequences u and v are defined by joint recurrences: u(n) = 2*u(n-1)*v(n-1)/(u(n-1) + v(n-1)) and v(n) = sqrt(u(n)*v(n-1)), with initial values u(0) = 2*sqrt(3) and v(0) = 3. This Borchardt-Pfaff algorithm is used to approximate Pi; see Finch.
Is A247832(n) - A247833(n) in {0,1} for n >= 0?
REFERENCES
Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, p. 19.
LINKS
EXAMPLE
Approximations for the first few terms of u - Pi, Pi - v, and 1/5^n are shown here:
n ... u(n) - Pi ... Pi - v(n) ... 1/5^n
0 ... 0.322509 .... 0.1415930 ... 1
1 ... 0.0737977 ... 0.035764 .... 0.2
2 ... 0.0180673 ... 0.008964 .... 0.04
3 ... 0.00449356 .. 0.002242 .... 0.008
4 ... 0.00112195 .. 0.000560 .... 0.0016
5 ... 0.00028039 .. 0.000140 .... 0.00032
6 ... 0.00007009 .. 0.000035 .... 0.000064
7 ... 0.00001752 .. 0.000008 .... 0.0000128
a(6) = 7 because u(7) < 1/5^6 < u(6).
MATHEMATICA
$RecursionLimit = 1000; z = 200; u[0] = N[2*Sqrt[3], 100]; v[0] = 3;
u[n_] := u[n] = 2*u[n - 1]*v[n - 1]/(u[n - 1] + v[n - 1]); v[n_] := v[n] =
Sqrt[u[n]*v[n - 1]]; f[n_] := f[n] = Select[Range[z], u[#] - Pi < 5^(-n) &, 1];
Flatten[Table[f[n], {n, 0, z}]] (* A247832 *)
g[n_] := g[n] = Select[Range[z], Pi - v[#] < 5^(-n) &, 1]
Flatten[Table[g[n], {n, 0, z}]] (* A247833 *)
CROSSREFS
Cf. A247833.
Sequence in context: A359908 A230872 A346151 * A047368 A020657 A037470
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Sep 26 2014
STATUS
approved