login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A047368
Numbers that are congruent to {0, 1, 2, 3, 4, 5} mod 7; a(n)=floor(7(n-1)/6).
6
0, 1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 12, 14, 15, 16, 17, 18, 19, 21, 22, 23, 24, 25, 26, 28, 29, 30, 31, 32, 33, 35, 36, 37, 38, 39, 40, 42, 43, 44, 45, 46, 47, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 63, 64, 65, 66, 67, 68, 70, 71, 72, 73, 74, 75, 77
OFFSET
1,3
FORMULA
G.f.: x^2*(1+x+x^2+x^3+x^4+2*x^5) / ( (1+x)*(1+x+x^2)*(x^2-x+1)*(x-1)^2 ). - R. J. Mathar, Dec 04 2011
From Wesley Ivan Hurt, Jun 15 2016: (Start)
a(n) = a(n-1) + a(n-6) - a(n-7) for n>7.
a(n) = (42*n-57-3*cos(Pi*n)-4*sqrt(3)*cos((4*n+1)*Pi/6)-12*sin((1-2*n)*Pi/6))/36.
a(6k) = 7k-2, a(6k-1) = 7k-3, a(6k-2) = 7k-4, a(6k-3) = 7k-5, a(6k-4) = 7k-6, a(6k-5) = 7k-7. (End)
MAPLE
A047368:=n->(42*n-57-3*cos(Pi*n)-4*sqrt(3)*cos((4*n+1)*Pi/6)-12*sin((1-2*n)*Pi/6))/36: seq(A047368(n), n=1..100); # Wesley Ivan Hurt, Jun 15 2016
MATHEMATICA
Select[Range[0, 100], MemberQ[{0, 1, 2, 3, 4, 5}, Mod[#, 7]] &] (* Wesley Ivan Hurt, Jun 15 2016 *)
LinearRecurrence[{1, 0, 0, 0, 0, 1, -1}, {0, 1, 2, 3, 4, 5, 7}, 100] (* Vincenzo Librandi, Jun 16 2016 *)
PROG
(PARI) a(n)=(n-1)*7\6 \\ M. F. Hasler, Oct 05 2014
(Magma) [n : n in [0..100] | n mod 7 in [0..5]]; // Wesley Ivan Hurt, Jun 15 2016
CROSSREFS
KEYWORD
nonn,easy
EXTENSIONS
Crossrefs and explicit formula in name added by M. F. Hasler, Oct 05 2014
STATUS
approved