login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A047369
Numbers that are congruent to {1, 2, 3, 4, 5} mod 7.
1
1, 2, 3, 4, 5, 8, 9, 10, 11, 12, 15, 16, 17, 18, 19, 22, 23, 24, 25, 26, 29, 30, 31, 32, 33, 36, 37, 38, 39, 40, 43, 44, 45, 46, 47, 50, 51, 52, 53, 54, 57, 58, 59, 60, 61, 64, 65, 66, 67, 68, 71, 72, 73, 74, 75, 78, 79, 80, 81, 82, 85, 86, 87, 88, 89, 92
OFFSET
1,2
FORMULA
G.f.: x*(1+x+x^2+x^3+x^4+2*x^5) / ( (x^4+x^3+x^2+x+1)*(x-1)^2 ). - R. J. Mathar, Dec 04 2011
From Wesley Ivan Hurt, Aug 08 2016: (Start)
a(n) = a(n-1) + a(n-5) - a(n-6) for n > 6, a(n) = a(n-5) + 7 for n > 5.
a(n) = n + 2*floor((n-1)/5), a(n) = 7*n/5 - 2*(1 + ((n+4) mod 5))/5.
a(5*k) = 7*k-2, a(5*k-1) = 7*k-3, a(5*k-2) = 7*k-4, a(5*k-3) = 7*k-5, a(5*k-4) = 7*k-6. (End)
MAPLE
A047369:=n->7*floor(n/5)+[(1, 2, 3, 4, 5)][(n mod 5)+1]: seq(A047369(n), n=0..100); # Wesley Ivan Hurt, Aug 08 2016
MATHEMATICA
Select[Range[0, 100], MemberQ[{1, 2, 3, 4, 5}, Mod[#, 7]] &] (* Wesley Ivan Hurt, Aug 08 2016 *)
LinearRecurrence[{1, 0, 0, 0, 1, -1}, {1, 2, 3, 4, 5, 8}, 100] (* Vincenzo Librandi, Aug 08 2016 *)
PROG
(Magma) [n : n in [0..150] | n mod 7 in [1..5]]; // Wesley Ivan Hurt, Aug 08 2016
CROSSREFS
Sequence in context: A288666 A180734 A031482 * A004827 A155941 A378844
KEYWORD
nonn,easy
STATUS
approved