The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A047366 Numbers that are congruent to {1, 3, 4, 5} mod 7. 1
 1, 3, 4, 5, 8, 10, 11, 12, 15, 17, 18, 19, 22, 24, 25, 26, 29, 31, 32, 33, 36, 38, 39, 40, 43, 45, 46, 47, 50, 52, 53, 54, 57, 59, 60, 61, 64, 66, 67, 68, 71, 73, 74, 75, 78, 80, 81, 82, 85, 87, 88, 89, 92, 94, 95, 96, 99, 101, 102, 103, 106, 108, 109, 110 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 LINKS Index entries for linear recurrences with constant coefficients, signature (1,0,0,1,-1). FORMULA G.f.: x*(1+2*x+x^2+x^3+2*x^4) / ( (1+x)*(x^2+1)*(x-1)^2 ). - R. J. Mathar, Dec 04 2011 From Wesley Ivan Hurt, May 24 2016: (Start) a(n) = a(n-1) + a(n-4) - a(n-5) for n>5. a(n) = (14n-9-i^(2n)-(3-i)*i^(-n)-(3+i)*i^n)/8 where i=sqrt(-1). a(2k) = A047389(k), a(2k-1) = A047346(k). (End) E.g.f.: (8 + sin(x) - 3*cos(x) + (7*x - 4)*sinh(x) + (7*x - 5)*cosh(x))/4. - Ilya Gutkovskiy, May 25 2016 MAPLE A047366:=n->(14*n-9-I^(2*n)-(3-I)*I^(-n)-(3+I)*I^n)/8: seq(A047366(n), n=1..100); # Wesley Ivan Hurt, May 24 2016 MATHEMATICA Table[(14n-9-I^(2n)-(3-I)*I^(-n)-(3+I)*I^n)/8, {n, 80}] (* Wesley Ivan Hurt, May 24 2016 *) Select[Range@ 120, MemberQ[{1, 3, 4, 5}, Mod[#, 7]] &] (* Michael De Vlieger, May 24 2016 *) PROG (MAGMA) [n : n in [0..150] | n mod 7 in [1, 3, 4, 5]]; // Wesley Ivan Hurt, May 24 2016 CROSSREFS Cf. A047346, A047389. Sequence in context: A001602 A308197 A087012 * A184776 A202104 A190246 Adjacent sequences:  A047363 A047364 A047365 * A047367 A047368 A047369 KEYWORD nonn,easy AUTHOR EXTENSIONS More terms from Wesley Ivan Hurt, May 24 2016 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 14 15:19 EDT 2021. Contains 345025 sequences. (Running on oeis4.)