

A308197


Numbers m such that the tribonacci representation of m (A278038) ends in an even number of 0's.


3



1, 3, 4, 5, 8, 10, 11, 12, 13, 14, 16, 17, 18, 21, 23, 25, 27, 28, 29, 32, 34, 35, 36, 37, 38, 40, 41, 42, 44, 45, 47, 48, 49, 52, 54, 55, 56, 57, 58, 60, 61, 62, 65, 67, 69, 71, 72, 73, 76, 78, 79, 80, 82, 84, 85, 86, 89, 91, 92, 93, 94, 95, 97, 98, 99, 102, 104, 106, 108, 109, 110, 113, 115, 116, 117, 118, 119, 121
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


COMMENTS

The asymptotic density of this sequence is c/(c+1) = 0.647798..., where c = 1.839286... (A058265) is the tribonacci constant.  Amiram Eldar, Mar 04 2022


LINKS

Amiram Eldar, Table of n, a(n) for n = 1..10000


MATHEMATICA

t[1] = 1; t[2] = 2; t[3] = 4; t[n_] := t[n] = t[n  1] + t[n  2] + t[n  3]; q[n_] := Module[{s = {}, m = n, k}, While[m > 0, k = 1; While[t[k] <= m, k++]; k; AppendTo[s, k]; m = t[k]; k = 1]; EvenQ[Min[s]  1]]; Select[Range[0, 121], q] (* Amiram Eldar, Mar 04 2022 *)


CROSSREFS

Cf. A278038, A278045, A308198, A058265.
Sequence in context: A125884 A346456 A001602 * A087012 A047366 A184776
Adjacent sequences: A308194 A308195 A308196 * A308198 A308199 A308200


KEYWORD

nonn,base


AUTHOR

N. J. A. Sloane, Jun 22 2019


STATUS

approved



