The OEIS is supported by the many generous donors to the OEIS Foundation.

A278045
Number of trailing 0's in tribonacci representation of n (cf. A278038).
8
1, 0, 1, 0, 2, 0, 1, 3, 0, 1, 0, 2, 0, 4, 0, 1, 0, 2, 0, 1, 3, 0, 1, 0, 5, 0, 1, 0, 2, 0, 1, 3, 0, 1, 0, 2, 0, 4, 0, 1, 0, 2, 0, 1, 6, 0, 1, 0, 2, 0, 1, 3, 0, 1, 0, 2, 0, 4, 0, 1, 0, 2, 0, 1, 3, 0, 1, 0, 5, 0, 1, 0, 2, 0, 1, 3, 0, 1, 0, 2, 0, 7, 0, 1, 0, 2, 0, 1, 3, 0, 1, 0, 2, 0, 4, 0, 1, 0, 2, 0
OFFSET
0,5
The number mod 3 of trailing 0's in the tribonacci representation of n >= 1 (this sequence mod 3) is the tribonacci word itself (A080843). - N. J. A. Sloane, Oct 04 2018
The number of trailing 1's in the tribonacci representation of n >= 0 (cf. A278038) is also the tribonacci word itself (A080843).
From Amiram Eldar, Mar 04 2022: (Start)
The asymptotic density of the occurrences of k = 0, 1, 2, ... is (c-1)/c^(k+1), where c = 1.839286... (A058265) is the tribonacci constant.
The asymptotic mean of this sequence is 1/(c-1) = 1.191487... (End)
MATHEMATICA
t[1] = 1; t[2] = 2; t[3] = 4; t[n_] := t[n] = t[n - 1] + t[n - 2] + t[n - 3]; a[0] = 1; a[n_] := Module[{s = {}, m = n, k}, While[m > 0, k = 1; While[t[k] <= m, k++]; k--; AppendTo[s, k]; m -= t[k]; k = 1]; Min[s] - 1]; Array[a, 100, 0] (* Amiram Eldar, Mar 04 2022 *)
CROSSREFS
Sequence in context: A119900 A328376 A141097 * A096335 A191910 A129503
KEYWORD
nonn,base
AUTHOR
N. J. A. Sloane, Nov 18 2016
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 20 14:12 EDT 2024. Contains 376072 sequences. (Running on oeis4.)