login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A184776 Numbers m such that prime(m) is of the form floor(k*sqrt(2)); complement of A184779. 6
1, 3, 4, 5, 8, 10, 11, 13, 14, 16, 17, 19, 21, 22, 23, 24, 25, 26, 27, 28, 30, 31, 32, 33, 35, 36, 40, 41, 42, 44, 45, 46, 48, 49, 50, 51, 52, 53, 54, 55, 56, 58, 59, 60, 64, 65, 68, 69, 70, 71, 72, 73, 74, 75, 76, 78, 79, 82, 83, 85, 87, 89, 90, 92, 93, 95, 96, 97, 98, 99, 100, 101, 102, 104, 105, 108, 109, 110, 112, 114, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 130, 131, 132, 136, 137, 138, 139, 141, 142, 143, 144 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

LINKS

G. C. Greubel, Table of n, a(n) for n = 1..10000

EXAMPLE

See A184774.

MATHEMATICA

r=2^(1/2); s=r/(r-1);

a[n_]:=Floor [n*r];  (* A001951 *)

b[n_]:=Floor [n*s];  (* A001952 *)

Table[a[n], {n, 1, 120}]

t1={}; Do[If[PrimeQ[a[n]], AppendTo[t1, a[n]]], {n, 1, 600}]; t1

t2={}; Do[If[PrimeQ[a[n]], AppendTo[t2, n]], {n, 1, 600}]; t2

t3={}; Do[If[MemberQ[t1, Prime[n]], AppendTo[t3, n]], {n, 1, 300}]; t3

t4={}; Do[If[PrimeQ[b[n]], AppendTo[t4, b[n]]], {n, 1, 600}]; t4

t5={}; Do[If[PrimeQ[b[n]], AppendTo[t5, n]], {n, 1, 600}]; t5

t6={}; Do[If[MemberQ[t4, Prime[n]], AppendTo[t6, n]], {n, 1, 300}]; t6

(* the lists t1, t2, t3, t4, t5, t6 match the sequences

A184774, A184775, A184776 , A184777, A184778, A184779 *)

CROSSREFS

Cf. A184774, A184775, A184779.

Sequence in context: A308197 A087012 A047366 * A202104 A190246 A117483

Adjacent sequences:  A184773 A184774 A184775 * A184777 A184778 A184779

KEYWORD

nonn

AUTHOR

Clark Kimberling, Jan 21 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 12 23:09 EDT 2021. Contains 343829 sequences. (Running on oeis4.)