The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A184778 Numbers k such that 2k + floor(k*sqrt(2)) is prime. 7
 1, 4, 5, 7, 11, 14, 18, 21, 32, 41, 46, 48, 49, 56, 62, 79, 83, 86, 90, 93, 97, 114, 120, 123, 127, 130, 134, 137, 144, 165, 169, 172, 178, 181, 185, 188, 213, 220, 222, 223, 237, 243, 246, 250, 253, 257, 260, 267, 288, 302, 308, 311, 325, 329, 343, 346, 352, 360, 366, 369, 376 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 LINKS G. C. Greubel, Table of n, a(n) for n = 1..10000 EXAMPLE See A184774. MATHEMATICA r=2^(1/2); s=r/(r-1); a[n_]:=Floor [n*r];  (* A001951 *) b[n_]:=Floor [n*s];  (* A001952 *) Table[a[n], {n, 1, 120}] t1={}; Do[If[PrimeQ[a[n]], AppendTo[t1, a[n]]], {n, 1, 600}]; t1 t2={}; Do[If[PrimeQ[a[n]], AppendTo[t2, n]], {n, 1, 600}]; t2 t3={}; Do[If[MemberQ[t1, Prime[n]], AppendTo[t3, n]], {n, 1, 300}]; t3 t4={}; Do[If[PrimeQ[b[n]], AppendTo[t4, b[n]]], {n, 1, 600}]; t4 t5={}; Do[If[PrimeQ[b[n]], AppendTo[t5, n]], {n, 1, 600}]; t5 t6={}; Do[If[MemberQ[t4, Prime[n]], AppendTo[t6, n]], {n, 1, 300}]; t6 (* the lists t1, t2, t3, t4, t5, t6 match the sequences A184774, A184775, A184776 , A184777, A184778, A184779 *) PROG (PARI) is(n)=isprime(sqrtint(2*n^2)+2*n) \\ Charles R Greathouse IV, May 22 2017 CROSSREFS Cf. A184774, A184777, A184779. Sequence in context: A175903 A080327 A283485 * A240118 A343211 A237133 Adjacent sequences:  A184775 A184776 A184777 * A184779 A184780 A184781 KEYWORD nonn AUTHOR Clark Kimberling, Jan 21 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 9 03:39 EDT 2021. Contains 343685 sequences. (Running on oeis4.)