login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A175903
Numbers n such that there is another number k such that n^2-1 and k^2-1 have the same set of prime factors.
1
4, 5, 7, 11, 13, 17, 19, 23, 25, 26, 29, 31, 34, 35, 37, 41, 43, 49, 51, 53, 55, 56, 59, 61, 65, 67, 71, 76, 79, 81, 83, 89, 91, 92, 97, 101, 109, 111, 113, 125, 127, 129, 131, 139, 149, 151, 155, 161, 169, 179, 181, 187, 191, 197, 199, 209, 223, 235, 239, 241, 251
OFFSET
1,1
COMMENTS
The difference from A175901 is that k may also be larger than n. So we obtain the sequence by building the union of the sets A175901 and A175902, and sorting.
EXAMPLE
a(2)=5 because set of prime divisors of 5^2-1 =2^3*3 is {2,3}, the same as for example for 7^2-1 = 2^4*3.
MATHEMATICA
aa = {}; bb = {}; cc = {}; ff = {}; Do[k = n^2 - 1; kk = FactorInteger[k]; b = {}; Do[AppendTo[b, kk[[m]][[1]]], {m, 1, Length[kk]}]; dd = Position[aa, b]; If[dd == {}, AppendTo[cc, n]; AppendTo[aa, b], AppendTo[ff, n]; AppendTo[bb, cc[[dd[[1]][[1]]]]]], {n, 2, 1000000}]; Take[Union[bb, ff], 100] (* Artur Jasinski *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Artur Jasinski, Oct 12 2010, Oct 21 2010
EXTENSIONS
Name improved by T. D. Noe, Nov 15 2010
STATUS
approved