login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A005487 Starts 0, 4 and contains no 3-term arithmetic progression.
(Formerly M3243)
11
0, 4, 5, 7, 11, 12, 16, 23, 26, 31, 33, 37, 38, 44, 49, 56, 73, 78, 80, 85, 95, 99, 106, 124, 128, 131, 136, 143, 169, 188, 197, 203, 220, 221, 226, 227, 238, 247, 259, 269, 276, 284, 287, 302, 308, 310, 313, 319, 337, 385, 392, 397, 422, 434, 455, 466, 470 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

This is what would now be called the Stanley Sequence S(0,4). See A185256.

REFERENCES

R. K. Guy, Unsolved Problems in Number Theory, E10.

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

LINKS

Chai Wah Wu, Table of n, a(n) for n = 0..10000

P. Erdos, V. Lev, G. Rauzy, C. Sandor, A. Sarkozy, Greedy algorithm, arithmetic progressions, subset sums and divisibility, Discrete Mathematics 200 (1999), pp. 119-135.

R. A. Moy and D. Rolnick, Novel structures in Stanley sequences, arXiv:1502.06013 [math.CO], 2015.

R. A. Moy and D. Rolnick, Novel structures in Stanley sequences, Discrete Math., 339 (2016), 689-698.

A. M. Odlyzko and R. P. Stanley, Some curious sequences constructed with the greedy algorithm, 1978

Index entries related to non-averaging sequences

MATHEMATICA

ss[s1_, M_] := Module[{n, chvec, swi, p, s2, i, j, t1, mmm}, t1 = Length[s1]; mmm = 1000; s2 = Table[s1, {t1 + M}] // Flatten; chvec = Array[0&, mmm]; For[i = 1 , i <= t1 , i++, chvec[[s2[[i]] ]] = 1]; (* get n-th term *) For[n = t1+1 , n <= t1 + M , n++, (* try i as next term *) For[i = s2[[n-1]] + 1 , i <= mmm , i++, swi = -1; (* test against j-th term *) For[ j = 1 , j <= n-2 , j++, p = s2[[n - j]]; If[ 2*p - i < 0 , Break[] ]; If[ chvec[[2*p - i]] == 1 , swi = 1; Break[] ] ]; If[ swi == -1 , s2[[n]] = i; chvec[[i]] = 1; Break[] ] ]; If[ swi == 1 , Print["Error, no solution at n = ", n] ] ]; Table[s2[[i]], {i, 1, t1+M}] ]; ss[{0, 4}, 80] (* Jean-Fran├žois Alcover, Sep 10 2013, translated from Maple program given in A185256 *)

PROG

(Python)

A005487_list = [0, 4]

for i in range(101-2):

    n, flag = A005487_list[-1]+1, False

    while True:

        for j in range(i+1, 0, -1):

            m = 2*A005487_list[j]-n

            if m in A005487_list:

                break

            if m < A005487_list[0]:

                flag = True

                break

        else:

            A005487_list.append(n)

            break

        if flag:

            A005487_list.append(n)

            break

        n += 1 # Chai Wah Wu, Jan 05 2016

CROSSREFS

Equals A033158(n+1)-1. Cf. A185256.

Sequence in context: A032686 A074300 A047375 * A291741 A084087 A175903

Adjacent sequences:  A005484 A005485 A005486 * A005488 A005489 A005490

KEYWORD

nonn,nice

AUTHOR

N. J. A. Sloane

EXTENSIONS

Name clarified by Charles R Greathouse IV, Jan 30 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 19 19:14 EDT 2018. Contains 316377 sequences. (Running on oeis4.)