login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numbers k such that 2k + floor(k*sqrt(2)) is prime.
7

%I #20 Jul 29 2022 09:56:31

%S 1,4,5,7,11,14,18,21,32,41,46,48,49,56,62,79,83,86,90,93,97,114,120,

%T 123,127,130,134,137,144,165,169,172,178,181,185,188,213,220,222,223,

%U 237,243,246,250,253,257,260,267,288,302,308,311,325,329,343,346,352,360,366,369,376

%N Numbers k such that 2k + floor(k*sqrt(2)) is prime.

%H G. C. Greubel, <a href="/A184778/b184778.txt">Table of n, a(n) for n = 1..10000</a>

%e See A184774.

%t r=2^(1/2); s=r/(r-1);

%t a[n_]:=Floor [n*r]; (* A001951 *)

%t b[n_]:=Floor [n*s]; (* A001952 *)

%t Table[a[n],{n,1,120}]

%t t1={}; Do[If[PrimeQ[a[n]], AppendTo[t1,a[n]]], {n,1,600}]; t1

%t t2={}; Do[If[PrimeQ[a[n]], AppendTo[t2,n]], {n,1,600}]; t2

%t t3={}; Do[If[MemberQ[t1, Prime[n]], AppendTo[t3,n]],{n,1,300}]; t3

%t t4={}; Do[If[PrimeQ[b[n]], AppendTo[t4,b[n]]],{n,1,600}]; t4

%t t5={}; Do[If[PrimeQ[b[n]], AppendTo[t5,n]],{n,1,600}]; t5

%t t6={}; Do[If[MemberQ[t4, Prime[n]], AppendTo[t6,n]],{n,1,300}]; t6

%t (* the lists t1,t2,t3,t4,t5,t6 match the sequences

%t A184774, A184775, A184776 ,A184777, A184778, A184779 *)

%o (PARI) is(n)=isprime(sqrtint(2*n^2)+2*n) \\ _Charles R Greathouse IV_, May 22 2017

%o (Python)

%o from itertools import count, islice

%o from math import isqrt

%o from sympy import isprime

%o def A184778_gen(): # generator of terms

%o return filter(lambda k:isprime((k<<1)+isqrt(k**2<<1)), count(1))

%o A184778_list = list(islice(A184778_gen(),25)) # _Chai Wah Wu_, Jul 28 2022

%Y Cf. A184774, A184777, A184779.

%K nonn

%O 1,2

%A _Clark Kimberling_, Jan 21 2011