login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A184775
Numbers k such that floor(k*sqrt(2)) is prime.
6
2, 4, 5, 8, 14, 21, 22, 29, 31, 38, 42, 48, 52, 56, 59, 63, 69, 72, 73, 76, 80, 90, 93, 97, 106, 107, 123, 127, 128, 137, 140, 141, 158, 161, 162, 165, 169, 171, 178, 182, 186, 192, 196, 199, 220, 222, 239, 246, 247, 250, 254, 260, 264, 268, 271, 281, 284, 298, 305, 311, 318
OFFSET
1,1
COMMENTS
Chua, Park, & Smith prove a general result that implies that, for any m, there is a constant C(m) such that a(n+m) - a(n) < C(m) infinitely often. - Charles R Greathouse IV, Jul 01 2022
LINKS
Lynn Chua, Soohyun Park, and Geoffrey D. Smith, Bounded gaps between primes in special sequences, Proceedings of the AMS, Volume 143, Number 11 (November 2015), pp. 4597-4611. arXiv:1407.1747 [math.NT]
EXAMPLE
See A184774.
MATHEMATICA
r=2^(1/2); s=r/(r-1);
a[n_]:=Floor [n*r]; (* A001951 *)
b[n_]:=Floor [n*s]; (* A001952 *)
Table[a[n], {n, 1, 120}]
t1={}; Do[If[PrimeQ[a[n]], AppendTo[t1, a[n]]], {n, 1, 600}]; t1
t2={}; Do[If[PrimeQ[a[n]], AppendTo[t2, n]], {n, 1, 600}]; t2
t3={}; Do[If[MemberQ[t1, Prime[n]], AppendTo[t3, n]], {n, 1, 300}]; t3
t4={}; Do[If[PrimeQ[b[n]], AppendTo[t4, b[n]]], {n, 1, 600}]; t4
t5={}; Do[If[PrimeQ[b[n]], AppendTo[t5, n]], {n, 1, 600}]; t5
t6={}; Do[If[MemberQ[t4, Prime[n]], AppendTo[t6, n]], {n, 1, 300}]; t6
(* the lists t1, t2, t3, t4, t5, t6 match the sequences
PROG
(PARI) isok(n) = isprime(floor(n*sqrt(2))); \\ Michel Marcus, Apr 10 2018
(PARI) is(n)=isprime(sqrtint(2*n^2)) \\ Charles R Greathouse IV, Jul 01 2022
(Python)
from itertools import count, islice
from math import isqrt
from sympy import isprime
def A184775_gen(): # generator of terms
return filter(lambda k:isprime(isqrt(k**2<<1)), count(1))
A184775_list = list(islice(A184775_gen(), 25)) # Chai Wah Wu, Jul 28 2022
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Jan 21 2011
STATUS
approved