login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numbers k such that floor(k*sqrt(2)) is prime.
6

%I #25 Jul 29 2022 09:51:13

%S 2,4,5,8,14,21,22,29,31,38,42,48,52,56,59,63,69,72,73,76,80,90,93,97,

%T 106,107,123,127,128,137,140,141,158,161,162,165,169,171,178,182,186,

%U 192,196,199,220,222,239,246,247,250,254,260,264,268,271,281,284,298,305,311,318

%N Numbers k such that floor(k*sqrt(2)) is prime.

%C Chua, Park, & Smith prove a general result that implies that, for any m, there is a constant C(m) such that a(n+m) - a(n) < C(m) infinitely often. - _Charles R Greathouse IV_, Jul 01 2022

%H G. C. Greubel, <a href="/A184775/b184775.txt">Table of n, a(n) for n = 1..10000</a>

%H Lynn Chua, Soohyun Park, and Geoffrey D. Smith, <a href="https://arxiv.org/abs/1407.1747">Bounded gaps between primes in special sequences</a>, Proceedings of the AMS, Volume 143, Number 11 (November 2015), pp. 4597-4611. arXiv:1407.1747 [math.NT]

%e See A184774.

%t r=2^(1/2); s=r/(r-1);

%t a[n_]:=Floor [n*r]; (* A001951 *)

%t b[n_]:=Floor [n*s]; (* A001952 *)

%t Table[a[n],{n,1,120}]

%t t1={}; Do[If[PrimeQ[a[n]], AppendTo[t1,a[n]]], {n,1,600}]; t1

%t t2={}; Do[If[PrimeQ[a[n]], AppendTo[t2,n]], {n,1,600}]; t2

%t t3={}; Do[If[MemberQ[t1, Prime[n]], AppendTo[t3,n]],{n,1,300}]; t3

%t t4={}; Do[If[PrimeQ[b[n]], AppendTo[t4,b[n]]],{n,1,600}]; t4

%t t5={}; Do[If[PrimeQ[b[n]], AppendTo[t5,n]],{n,1,600}]; t5

%t t6={}; Do[If[MemberQ[t4, Prime[n]], AppendTo[t6,n]],{n,1,300}]; t6

%t (* the lists t1,t2,t3,t4,t5,t6 match the sequences

%t A184774, A184775, A184776 ,A184777, A184778, A184779 *)

%o (PARI) isok(n) = isprime(floor(n*sqrt(2))); \\ _Michel Marcus_, Apr 10 2018

%o (PARI) is(n)=isprime(sqrtint(2*n^2)) \\ _Charles R Greathouse IV_, Jul 01 2022

%o (Python)

%o from itertools import count, islice

%o from math import isqrt

%o from sympy import isprime

%o def A184775_gen(): # generator of terms

%o return filter(lambda k:isprime(isqrt(k**2<<1)), count(1))

%o A184775_list = list(islice(A184775_gen(),25)) # _Chai Wah Wu_, Jul 28 2022

%Y Cf. A001951, A184774, A184776.

%K nonn,easy

%O 1,1

%A _Clark Kimberling_, Jan 21 2011