login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A240075
Lexicographically earliest nonnegative increasing sequence such that no four terms have constant second differences.
12
0, 1, 2, 4, 5, 8, 15, 16, 17, 20, 44, 51, 52, 53, 56, 58, 64, 78, 166, 167, 192, 195, 196, 200, 202, 203, 206, 217, 226, 248, 249, 276, 312, 649, 657, 678, 681, 682, 715, 726, 740, 743, 747, 750, 771, 790, 830, 833, 836, 838, 842, 854, 875, 908, 911, 971
OFFSET
1,3
LINKS
Vincenzo Librandi and T. D. Noe, Table of n, a(n) for n = 1..755 (first 123 terms from Vincenzo Librandi)
MATHEMATICA
t = {0, 1, 2}; Do[s = Table[Append[i, n], {i, Subsets[t, {3}]}]; If[! MemberQ[Flatten[Table[Differences[i, 3], {i, s}]], 0], AppendTo[t, n]], {n, 3, 1000}]; t
PROG
(PARI) A240075(n, show=0, L=4, o=2, v=[0], D=v->v[2..-1]-v[1..-2])={ my(d, m); while( #v<n, show&&print1(v[#v]", "); v=concat(v, v[#v]); while( v[#v]++, forvec( i=vector(L, j, [if(j<L, j, #v), #v]), d=D(vecextract(v, i)); m=o; while(m--&&#Set(d=D(d))>1, ); #Set(d)>1||next(2), 2); break)); v[#v]} \\ M. F. Hasler, Jan 12 2016
CROSSREFS
For the positive sequence, see A240555, which is this sequence plus 1.
Summary of increasing sequences avoiding arithmetic progressions of specified lengths (the second of each pair is obtained by adding 1 to the first):
3-term AP: A005836 (>=0), A003278 (>0);
4-term AP: A005839 (>=0), A005837 (>0);
5-term AP: A020654 (>=0), A020655 (>0);
6-term AP: A020656 (>=0), A005838 (>0);
7-term AP: A020657 (>=0), A020658 (>0);
8-term AP: A020659 (>=0), A020660 (>0);
9-term AP: A020661 (>=0), A020662 (>0);
10-term AP: A020663 (>=0), A020664 (>0).
For the analog sequence which avoids 5-term subsequences of constant third differences, see A240556 (>=0) and A240557 (>0).
Sequence in context: A226791 A357177 A184775 * A272229 A229083 A194415
KEYWORD
nonn
AUTHOR
T. D. Noe, Apr 09 2014
EXTENSIONS
Definition corrected by N. J. A. Sloane and M. F. Hasler, Jan 04 2016.
STATUS
approved