The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A001602 Fibonacci entry points: a(n) = smallest m > 0 such that the n-th prime divides Fibonacci(m). (Formerly M2310 N0912) 51
 3, 4, 5, 8, 10, 7, 9, 18, 24, 14, 30, 19, 20, 44, 16, 27, 58, 15, 68, 70, 37, 78, 84, 11, 49, 50, 104, 36, 27, 19, 128, 130, 69, 46, 37, 50, 79, 164, 168, 87, 178, 90, 190, 97, 99, 22, 42, 224, 228, 114, 13, 238, 120, 250, 129, 88, 67, 270, 139, 28, 284, 147, 44, 310 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS "[a(n)] is called by Lucas the rank of apparition of p and we know it is a divisor of, or equal to prime(n)-1 or prime(n)+1" - Vajda, p. 84. (Note that a(3)=5. This is the only exception.) - Chris K. Caldwell, Nov 03 2008 Every number except 1, 2, 6 and 12 eventually occurs in this sequence. See also A086597(n), the number of primitive prime factors of Fibonacci(n). - T. D. Noe, Jun 13 2008 For each prime p we have an infinite sequence of integers, F(i*a(n))/p, i=1,2,... See also A236479. For primes p >= 3 and exponents j >= 2, with k = a(n) and p = p(n), it appears that F(k*i*p^(j-1))/p^j is an integer, for i >= 0. For p = 2, F(k*i*p^(j-1))/p^(j+1) = integer. - Richard R. Forberg, Jan 26-29 2014 [Comments revised by N. J. A. Sloane, Sep 24 2015] Let p=prime(n). a(n) is also a divisor of (p-1)/2 (if p mod 5 == 1 or 4) or (p+1)/2 (if p mod 5 == 2 or 3) if and only if p mod 4 = 1. - Azuma Seiichi, Jul 29 2014 REFERENCES N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence). N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). S. Vajda, Fibonacci and Lucas numbers and the Golden Section, Ellis Horwood Ltd., Chichester, 1989. LINKS T. D. Noe, Table of n, a(n) for n = 1..10000 U. Alfred, M. Wunderlich, Tables of Fibonacci Entry Points, Part I, (1965). B. Avila, T. Khovanova, Free Fibonacci SequencesJ. Int. Seq. 17 (2014) # 14.8.5. Alfred Brousseau, Fibonacci and Related Number Theoretic Tables, Fibonacci Association, San Jose, CA, 1972. See p. 25. Paul Cubre and Jeremy Rouse, Divisibility properties of the Fibonacci entry point, arXiv:1212.6221 [math.NT], 2012. D. E. Daykin and L. A. G. Dresel, Factorization of Fibonacci Numbers part 2, Fibonacci Quarterly, vol 8 (1970), pages 23 - 30 and 82. Ramon Glez-Regueral, An entry-point algorithm for high-speed factorization, Thirteenth Internat. Conf. Fibonacci Numbers Applications, Patras, Greece, 2008. R. K. Guy, The Second Strong Law of Small Numbers, Math. Mag, 63 (1990), no. 1, 3-20. [Annotated scanned copy] Dov Jarden, Recurring Sequences, Riveon Lematematika, Jerusalem, 1966. [Annotated scanned copy, pp. 2-3 missing] See p. 7. D. Lind et al., Tables of Fibonacci entry points, part 2, reviewed in, Math. Comp., 20 (1966), 618-619. Patrick McKinley, Table of a(n) for n=1..678921 Daniel Yaqubi, Amirali Fatehizadeh, Some results on average of Fibonacci and Lucas sequences, arXiv:2001.11839 [math.CO], 2020. FORMULA a(n) = A001177(prime(n)). a(n) <= prime(n) + 1. - Charles R Greathouse IV, Jan 02 2013 EXAMPLE The 5th prime is 11 and 11 first divides Fib(10)=55, so a(5) = 10. MAPLE A001602 := proc(n)     local i, p;     p := ithprime(n);     for i from 1 do         if modp(combinat[fibonacci](i), p) = 0 then             return i;         end if;     end do: end proc: # R. J. Mathar, Oct 31 2015 MATHEMATICA Table[k=1; While[!Divisible[Fibonacci[k], Prime[n]], k++]; k, {n, 70}] (* Harvey P. Dale, Feb 15 2012 *) (* a fast, but more complicated method *) MatrixPowerMod[mat_, n_, m_Integer] := Mod[Fold[Mod[If[#2 == 1, #1.#1.mat, #1.#1], m] &, mat, Rest[IntegerDigits[n, 2]]], m]; FibMatrix[n_Integer, m_Integer] := MatrixPowerMod[{{0, 1}, {1, 1}}, n, m]; FibEntryPointPrime[p_Integer] := Module[{n, d, k}, If[PrimeQ[p], n = p - JacobiSymbol[p, 5]; d = Divisors[n]; k = 1; While[FibMatrix[d[[k]], p][[1, 2]] > 0, k++]; d[[k]]]]; SetAttributes[FibEntryPointPrime, Listable]; FibEntryPointPrime[Prime[Range]] (* T. D. Noe, Jan 03 2013 *) With[{nn=70, t=Table[{n, Fibonacci[n]}, {n, 500}]}, Transpose[ Flatten[ Table[ Select[t, Divisible[#[], Prime[i]]&, 1], {i, nn}], 1]][]] (* Harvey P. Dale, May 31 2014 *) PROG (Haskell) import Data.List (findIndex) import Data.Maybe (fromJust) a001602 n = (+ 1) \$ fromJust \$             findIndex ((== 0) . (`mod` a000040 n)) \$ tail a000045_list -- Reinhard Zumkeller, Apr 08 2012 (PARI) a(n)=if(n==3, 5, my(p=prime(n)); fordiv(p^2-1, d, if(fibonacci(d)%p==0, return(d)))) \\ Charles R Greathouse IV, Jul 17 2012 (PARI) do(p)=my(k=p+[0, -1, 1, 1, -1][p%5+1], f=factor(k)); for(i=1, #f[, 1], for(j=1, f[i, 2], if((Mod([1, 1; 1, 0], p)^(k/f[i, 1]))[1, 2], break); k/=f[i, 1])); k a(n)=do(prime(n)) apply(do, primes(100)) \\ Charles R Greathouse IV, Jan 03 2013 (Python) from sympy.ntheory.generate import prime def A001602(n):     a, b, i, p = 0, 1, 1, prime(n)     while b % p:         a, b, i = b, (a+b) % p, i+1     return i # Chai Wah Wu, Nov 03 2015, revised Apr 04 2016. CROSSREFS Cf. A051694, A001177, A086597. Sequence in context: A327984 A066906 A125884 * A308197 A087012 A047366 Adjacent sequences:  A001599 A001600 A001601 * A001603 A001604 A001605 KEYWORD nonn,nice AUTHOR EXTENSIONS More terms from Jud McCranie STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 18 14:54 EDT 2021. Contains 345119 sequences. (Running on oeis4.)