

A194363


Lucas entry points: smallest m >= 0 such that the nth prime divides Lucas(m), or 1 if there is no such m.


2



0, 2, 1, 4, 5, 1, 1, 9, 12, 7, 15, 1, 10, 22, 8, 1, 29, 1, 34, 35, 1, 39, 42, 1, 1, 25, 52, 18, 1, 1, 64, 65, 1, 23, 1, 25, 1, 82, 84, 1, 89, 45, 95, 1, 1, 11, 21, 112, 114, 57, 1, 119, 60, 125, 1, 44, 1, 135, 1, 14, 142, 1, 22, 155, 1
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


COMMENTS

The 1 terms are for the primes in A053028. Note that 2 divides the zeroth Lucas number. In the plots, the uppermost line consists of the odd primes in A000057. Note that when a(n) > 0, then a(n) = A001602(n)/2.


LINKS

T. D. Noe, Table of n, a(n) for n = 1..2000
T. D. Noe, Another plot of this sequence


FORMULA

a(n) = A223486(A000040(n)).  Jon Maiga, Jul 01 2021


MATHEMATICA

lim = 100; luc = LucasL[Range[0, Prime[lim]]]; Table[s = Select[Range[p], Mod[luc[[#]], p] == 0 &, 1]; If[s == {}, 1, s[[1]]  1], {p, Prime[Range[lim]]}]


CROSSREFS

Cf. A000204 (Lucas numbers), A001602 (Fibonacci entry points), A223486 (Lucas entry points), A000040 (prime numbers).
Sequence in context: A191660 A129874 A021983 * A161135 A237274 A038730
Adjacent sequences: A194360 A194361 A194362 * A194364 A194365 A194366


KEYWORD

sign


AUTHOR

T. D. Noe, Oct 09 2011


STATUS

approved



