login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A038730 Path-counting triangular array T(i,j), read by rows, obtained from array t in A038792 by T(i,j) = t(2*i-j, j) (for i >= 1 and 1 <= j <= i). 11
1, 1, 2, 1, 4, 5, 1, 6, 12, 13, 1, 8, 23, 33, 34, 1, 10, 38, 73, 88, 89, 1, 12, 57, 141, 211, 232, 233, 1, 14, 80, 245, 455, 581, 609, 610, 1, 16, 107, 393, 888, 1350, 1560, 1596, 1597, 1, 18, 138, 593, 1594, 2881, 3805, 4135, 4180, 4181 (list; table; graph; refs; listen; history; text; internal format)
OFFSET
1,3
LINKS
H. Belbachir and A. Belkhir, Combinatorial Expressions Involving Fibonacci, Hyperfibonacci, and Incomplete Fibonacci Numbers, Journal of Integer Sequences, Vol. 17 (2014), Article 14.4.3.
A. Dil and I. Mezo, A symmetric algorithm for hyperharmonic and Fibonacci numbers, Appl. Math. Comp. 206 (2008), 942-951; in Eqs. (11), see the incomplete Fibonacci numbers.
Piero Filipponi, Incomplete Fibonacci and Lucas numbers, P. Rend. Circ. Mat. Palermo (Serie II) 45(1) (1996), 37-56; see Table 1 that contains the incomplete Fibonacci numbers.
A. Pintér and H.M. Srivastava, Generating functions of the incomplete Fibonacci and Lucas numbers, Rend. Circ. Mat. Palermo (Serie II) 48(3) (1999), 591-596.
FORMULA
T(n, n) = A001519(n) for n >= 1 (odd-indexed Fibonacci numbers).
From Petros Hadjicostas, Sep 03 2019: (Start)
Following Dil and Mezo (2008, p. 944), define the incomplete Fibonacci numbers by F(n,k) = Sum_{s = 0..k} binomial(n-1-s, s) for n >= 1 and 0 <= k <= floor((n-1)/2). Then T(i, j) = F(2*i-1, j-1) for 1 <= j <= i.
G.f. for column j: Define g(t,j) = ((1+t)^j * (1+t-t^2) + (1-t)^j * (1-t-t^2))/2, which is a function of t^2. Then the g.f. for column j is Sum_{i >= j} T(i,j)*x^i = x^j * (Fibonacci(2*j-1) * (1-x)^(j+1) + Fibonacci(2*j-2) * x * (1-x)^j - x * g(sqrt(x), j)) / ((1-x)^j * (1-3*x+x^2)). This follows from the results in Pintér and Srivastava (1999).
(End)
EXAMPLE
Triangle T(i,j) begins as follows:
1;
1, 2;
1, 4, 5;
1, 6, 12, 13;
1, 8, 23, 33, 34;
1, 10, 38, 73, 88, 89;
1, 12, 57, 141, 211, 232, 233;
... [edited by Petros Hadjicostas, Sep 02 2019]
MAPLE
t:= proc(i, j) option remember; `if`(i=1 or j=1, 1,
max(t(i-1, j)+t(i-1, j-1), t(i-1, j-1)+t(i, j-1)))
end:
T:= (i, j)-> t(2*i-j, j):
seq(seq(T(i, j), j=1..i), i=1..10); # Alois P. Heinz, Sep 02 2019
MATHEMATICA
T[i_, j_]:= Sum[Binomial[2i-k-2, k], {k, 0, j-1}];
Table[T[i, j], {i, 1, 10}, {j, 1, i}] // Flatten (* Jean-François Alcover, Dec 06 2019 *)
PROG
(Magma) [(&+[Binomial(2*n-j-2, j): j in [0..k-1]]): k in [1..n], n in [1..12]]; // G. C. Greubel, Apr 05 2022
(SageMath)
def A038730(n, k): return sum( binomial(2*n-j-2, j) for j in (0..k-1))
flatten([[A038730(n, k) for k in (1..n)] for n in (1..12)]) # G. C. Greubel, Apr 05 2022
CROSSREFS
Sequence in context: A194363 A161135 A237274 * A188106 A050166 A124959
KEYWORD
nonn,tabl
AUTHOR
Clark Kimberling, May 02 2000
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 24 17:10 EDT 2024. Contains 371962 sequences. (Running on oeis4.)