login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A124959
Triangle read by rows: T(n,k) = a(k)*binomial(n,k) (0 <= k <= n), where a(0)=1, a(1)=2, a(k) = a(k-1) + 3*a(k-2) for k >= 2 (a(k) = A006138(k)).
1
1, 1, 2, 1, 4, 5, 1, 6, 15, 11, 1, 8, 30, 44, 26, 1, 10, 50, 110, 130, 59, 1, 12, 75, 220, 390, 354, 137, 1, 14, 105, 385, 910, 1239, 959, 314, 1, 16, 140, 616, 1820, 3304, 3836, 2512, 725, 1, 18, 180, 924, 3276, 7434, 11508, 11304, 6525, 1667, 1, 20, 225, 1320, 5460, 14868, 28770, 37680, 32625, 16670, 3842
OFFSET
0,3
COMMENTS
Sum of entries in row n = A006190(n+1).
EXAMPLE
First few rows of the triangle:
1;
1, 2;
1, 4, 5;
1, 6, 15, 11;
1, 8, 30, 44, 26;
1, 10, 50, 110, 130, 59;
...
MAPLE
a:=proc(n) if n=0 then 1 elif n=1 then 2 else a(n-1)+3*a(n-2) fi end: T:=(n, k)->a(k)*binomial(n, k): for n from 0 to 10 do seq(T(n, k), k=0..n) od; # yields sequence in triangular form
MATHEMATICA
T[n_, k_]:= T[n, k]= Simplify[(I*Sqrt[3])^(k-1)*Binomial[n, k]*(I*Sqrt[3]* ChebyshevU[k, 1/(2*I*Sqrt[3])] + ChebyshevU[k-1, 1/(2*I*Sqrt[3])])];
Table[T[n, k], {n, 0, 12}, {k, 0, n}]//Flatten (* G. C. Greubel, Nov 19 2019 *)
PROG
(PARI)
b(k) = if(k<2, k+1, b(k-1) + 3*b(k-2));
T(n, k) = binomial(n, k)*b(k);
for(n=0, 10, for(k=0, n, print1(T(n, k), ", "))) \\ G. C. Greubel, Nov 19 2019
(Magma)
function b(k)
if k lt 2 then return k+1;
else return b(k-1) + 3*b(k-2);
end if;
return b;
end function;
[Binomial(n, k)*b(k): k in [0..n], n in [0..12]]; // G. C. Greubel, Nov 19 2019
(Sage)
@CachedFunction
def b(k):
if (k<2): return k+1
else: return b(k-1) + 3*b(k-2)
[[binomial(n, k)*b(k) for k in (0..n)] for n in (0..12)] # G. C. Greubel, Nov 19 2019
CROSSREFS
Sequence in context: A038730 A188106 A050166 * A081281 A108198 A371686
KEYWORD
nonn,tabl
AUTHOR
Gary W. Adamson, Nov 13 2006
EXTENSIONS
Edited by N. J. A. Sloane, Dec 03 2006
STATUS
approved