login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A006138 a(n) = a(n-1) + 3*a(n-2).
(Formerly M1399)
13
1, 2, 5, 11, 26, 59, 137, 314, 725, 1667, 3842, 8843, 20369, 46898, 108005, 248699, 572714, 1318811, 3036953, 6993386, 16104245, 37084403, 85397138, 196650347, 452841761, 1042792802, 2401318085, 5529696491, 12733650746, 29322740219, 67523692457, 155491913114 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

The binomial transform of a(n) is b(n) = A006190(n+1), which satisfies b(n) = 3*b(n-1) + b(n-2). - Paul Barry, May 21 2006

Partial sums of A105476. - Paul Barry, Feb 02 2007

An elephant sequence, see A175654. For the corner squares four A[5] vectors, with decimal values 69, 261, 321 and 324, lead to this sequence. For the central square these vectors lead to the companion sequence A105476 (without the first leading 1). - Johannes W. Meijer, Aug 15 2010

Equals the INVERTi transform of A063782: (1, 3, 10, 32, 104, ...). - Gary W. Adamson, Aug 14 2010

Pisano period lengths: 1, 3, 1, 6, 24, 3, 24, 6, 3, 24, 120, 6, 156, 24, 24, 12, 16, 3, 90, 24, ... - R. J. Mathar, Aug 10 2012

The sequence is the INVERT transform of A016116: (1, 1, 2, 2, 4, 4, 8, 8, ...). - Gary W. Adamson, Jul 17 2015

REFERENCES

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..200

N. T. Gridgeman, A new look at Fibonacci generalization, Fib,. Quart., 11 (1973), 40-55.

Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992.

Simon Plouffe, 1031 Generating Functions and Conjectures, Université du Québec à Montréal, 1992.

Index entries for linear recurrences with constant coefficients, signature (1,3).

FORMULA

a(n) = Sum_{k=0..n+1} A122950(n+1,k)*2^(n+1-k). - Philippe Deléham, Jan 04 2008

G.f.: (1+x)/(1-x-3*x^2). - Paul Barry, May 21 2006

a(n) = Sum_{k=0..n} C(floor((2n-k)/2),n-k)*3^floor(k/2). - Paul Barry, Feb 02 2007

a(n) = (1/2)*(((1/2)-(1/2)*sqrt(13))^n+((1/2)+(1/2)*sqrt(13))^n)+(3/26)*sqrt(13)*(((1/2)+(1/2)*sqrt(13))^n-((1/2)-(1/2)*sqrt(13))^n). - Paolo P. Lava, Jul 17 2009

a(n) = A006130(n) + A006130(n-1). - R. J. Mathar, Jun 22 2011

a(n) = (i*sqrt(3))^(n-1)*(i*sqrt(3)*ChebyshevU(n, 1/(2*i*sqrt(3))) + ChebyshevU(n-1, 1/(2*i*sqrt(3)))), where i=sqrt(-1). - G. C. Greubel, Nov 19 2019

MAPLE

A006138:=-(1+z)/(-1+z+3*z**2); # Simon Plouffe in his 1992 dissertation

MATHEMATICA

CoefficientList[Series[(1+z)/(1-z-3*z^2), {z, 0, 40}], z] (* Vladimir Joseph Stephan Orlovsky, Jun 11 2011 *)

Table[(I*Sqrt[3])^(n-1)*(I*Sqrt[3]*ChebyshevU[n, 1/(2*I*Sqrt[3])] + ChebyshevU[n-1, 1/(2*I*Sqrt[3])]), {n, 0, 40}]//Simplify (* G. C. Greubel, Nov 19 2019 *)

PROG

(PARI) main(size)={my(v=vector(size), i); v[1]=1; v[2]=2; for(i=3, size, v[i]=v[i-1]+3*v[i-2]); return(v); } /* Anders Hellström, Jul 17 2015 */

(MAGMA) [n le 2 select n else Self(n-1)+3*Self(n-2): n in [1..40]]; // Vincenzo Librandi, Sep 15 2016

(Sage)

def A006138_list(prec):

    P.<x> = PowerSeriesRing(ZZ, prec)

    return P((1+x)/(1-x-3*x^2)).list()

A006138_list(40) # G. C. Greubel, Nov 19 2019

(GAP) a:=[1, 2];; for n in [3..40] do a[n]:=a[n-1]+3*a[n-2]; od; a; # G. C. Greubel, Nov 19 2019

CROSSREFS

Cf. A063782. - Gary W. Adamson, Aug 14 2010

Cf. A006130, A006190, A016116, A105476, A122950, A175654, A274977.

Sequence in context: A291233 A026787 A064416 * A291930 A238437 A191692

Adjacent sequences:  A006135 A006136 A006137 * A006139 A006140 A006141

KEYWORD

nonn,easy

AUTHOR

N. J. A. Sloane

EXTENSIONS

Typo in formula corrected by Johannes W. Meijer, Aug 15 2010

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 10 23:29 EST 2019. Contains 329910 sequences. (Running on oeis4.)