The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A274977 a(n) = a(n-1) + 3*a(n-2) with n>1, a(0)=1, a(1)=6. 7
 1, 6, 9, 27, 54, 135, 297, 702, 1593, 3699, 8478, 19575, 45009, 103734, 238761, 549963, 1266246, 2916135, 6714873, 15463278, 35607897, 81997731, 188821422, 434814615, 1001278881, 2305722726, 5309559369, 12226727547, 28155405654, 64835588295, 149301805257, 343808570142 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS a(n)/a(n+1) converges to 1/A209927 as n approaches infinity. LINKS Bruno Berselli, Table of n, a(n) for n = 0..1000 Index entries for linear recurrences with constant coefficients, signature (1,3). FORMULA G.f.: (1 + 5*x)/(1 - x - 3*x^2). a(n) = ((13 + 11*sqrt(13))*(1 + sqrt(13))^n + (13 - 11*sqrt(13))*(1 - sqrt(13))^n)/(26*2^n). 3*a(n) + a(n+1) = 9*A105476(n+1). 3*a(n) - a(n+1) = 27*A006130(n-3) with n>1, A006130(-1) = 0. a(n+1) - a(n) = 27*A105476(n-3) with n>2. a(n) = 3^((n-1)/2)*( sqrt(3)*Fibonacci(n+1, 1/sqrt(3)) + 5*Fibonacci(n, 1/sqrt(3)) ). - G. C. Greubel, Jan 15 2020 E.g.f.: (1/13)*exp(x/2)*(13*cosh((sqrt(13)*x)/2) + 11*sqrt(13)*sinh((sqrt(13)*x)/2)). - Stefano Spezia, Jan 15 2020 EXAMPLE Table of similar sequences (not extendable on the left side) where this recurrence can be applied to the first two terms: ---------------------------------------------------------------------- (*) - - 1, -1, 2, -1, 5, 2, 17, 23, 74, 143, 365, ... A052533: - - 1, 0, 3, 3, 12, 21, 57, 120, 291, 651, 1524, ... (^) - 0, 1, 1, 4, 7, 19, 40, 97, 217, 508, 1159, 2683, ... A006138: - - 1, 2, 5, 11, 26, 59, 137, 314, 725, 1667, 3842, ... A105476: - - 1, 3, 6, 15, 33, 78, 177, 411, 942, 2175, 5001, ... (^) 0, 1, 1, 4, 7, 19, 40, 97, 217, 508, 1159, 2683, 6160, ... A105963: - - 1, 5, 8, 23, 47, 116, 257, 605, 1376, 3191, 7319, ... A274977: - - 1, 6, 9, 27, 54, 135, 297, 702, 1593, 3699, 8478, ... A075118: - 2, 1, 7, 10, 31, 61, 154, 337, 799, 1810, 4207, 9637, ... ---------------------------------------------------------------------- (*) see version A140165. (^) see A006130 and the signed versions A140167, A182228. MAPLE seq(coeff(series((1+5*x)/(1-x-3*x^2), x, n+1), x, n), n = 0..40); # G. C. Greubel, Jan 15 2020 MATHEMATICA RecurrenceTable[{a[n]==a[n-1] +3a[n-2], a[0]==1, a[1]==6}, a, {n, 0, 40}] Table[Round[Sqrt[3]^(n-1)*(Sqrt[3]*Fibonacci[n+1, 1/Sqrt[3]] + 5*Fibonacci[n, 1/Sqrt[3]])], {n, 0, 40}] (* G. C. Greubel, Jan 15 2020 *) LinearRecurrence[{1, 3}, {1, 6}, 40] (* Harvey P. Dale, Jul 11 2023 *) PROG (PARI) v=vector(40); v[1]=1; v[2]=6; for(n=3, #v, v[n]=v[n-1]+3*v[n-2]); v (Sage) from sage.combinat.sloane_functions import recur_gen2 a = recur_gen2(1, 6, 1, 3) [next(a) for n in range(40)] (Magma) [n le 2 select 5*n-4 else Self(n-1)+3*Self(n-2): n in [1..40]]; (Magma) R:=PowerSeriesRing(Integers(), 32); Coefficients(R!((1 + 5*x)/(1- x-3*x^2))); // Marius A. Burtea, Jan 15 2020 (GAP) a:=[1, 6];; for n in [3..40] do a[n]:=a[n-1]+3*a[n-2]; od; a; # G. C. Greubel, Jan 15 2020 CROSSREFS Cf. A006130, A006138, A052533, A075118, A105476, A105963. Sequence in context: A300345 A024878 A007414 * A340630 A025493 A368716 Adjacent sequences: A274974 A274975 A274976 * A274978 A274979 A274980 KEYWORD nonn,easy AUTHOR Bruno Berselli, Sep 13 2016 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified February 28 22:27 EST 2024. Contains 370400 sequences. (Running on oeis4.)