login
This site is supported by donations to The OEIS Foundation.

 

Logo

"Email this user" was broken Aug 14 to 9am Aug 16. If you sent someone a message in this period, please send it again.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A274977 a(n) = a(n-1) + 3*a(n-2) with n>1, a(0)=1, a(1)=6. 7
1, 6, 9, 27, 54, 135, 297, 702, 1593, 3699, 8478, 19575, 45009, 103734, 238761, 549963, 1266246, 2916135, 6714873, 15463278, 35607897, 81997731, 188821422, 434814615, 1001278881, 2305722726, 5309559369, 12226727547, 28155405654, 64835588295, 149301805257, 343808570142 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

a(n)/a(n+1) converges to 1/A209927 as n approaches infinity.

LINKS

Bruno Berselli, Table of n, a(n) for n = 0..1000

Index entries for linear recurrences with constant coefficients, signature (1,3).

FORMULA

G.f.: (1 + 5*x)/(1 - x - 3*x^2).

a(n) = ((13 + 11*sqrt(13))*(1 + sqrt(13))^n + (13 - 11*sqrt(13))*(1 - sqrt(13))^n)/(26*2^n).

3*a(n) + a(n+1) =  9*A105476(n+1).

3*a(n) - a(n+1) = 27*A006130(n-3) with n>1, A006130(-1) = 0.

a(n+1) - a(n)   = 27*A105476(n-3) with n>2.

EXAMPLE

Table of similar sequences (not extendable on the left side) where this recurrence can be applied to the first two terms:

----------------------------------------------------------------------

(*)      -  -  1, -1,  2, -1,  5,   2,  17,  23,   74,  143,  365, ...

A052533: -  -  1,  0,  3,  3, 12,  21,  57, 120,  291,  651, 1524, ...

(°)      -  0, 1,  1,  4,  7, 19,  40,  97, 217,  508, 1159, 2683, ...

A006138: -  -  1,  2,  5, 11, 26,  59, 137, 314,  725, 1667, 3842, ...

A105476: -  -  1,  3,  6, 15, 33,  78, 177, 411,  942, 2175, 5001, ...

(°)      0, 1, 1,  4,  7, 19, 40,  97, 217, 508, 1159, 2683, 6160, ...

A105963: -  -  1,  5,  8, 23, 47, 116, 257, 605, 1376, 3191, 7319, ...

A274977: -  -  1,  6,  9, 27, 54, 135, 297, 702, 1593, 3699, 8478, ...

A075118: -  2, 1,  7, 10, 31, 61, 154, 337, 799, 1810, 4207, 9637, ...

----------------------------------------------------------------------

(*) see version A140165.

(°) see A006130 and the signed versions A140167, A182228.

MATHEMATICA

RecurrenceTable[{a[n] == a[n - 1] + 3 a[n - 2], a[0] == 1, a[1] == 6}, a, {n, 0, 40}]

PROG

(PARI) v=vector(40); v[1]=1; v[2]=6; for(n=3, #v, v[n]=v[n-1]+3*v[n-2]); v

(Sage)

from sage.combinat.sloane_functions import recur_gen2

a=recur_gen2(1, 6, 1, 3)

[a.next() for n in xrange(40)]

(MAGMA) [n le 2 select 5*n-4 else Self(n-1)+3*Self(n-2): n in [1..40]];

CROSSREFS

Cf. A006130, A006138, A052533, A075118, A105476, A105963.

Sequence in context: A243708 A024878 A007414 * A025493 A091519 A086491

Adjacent sequences:  A274974 A274975 A274976 * A274978 A274979 A274980

KEYWORD

nonn,easy

AUTHOR

Bruno Berselli, Sep 13 2016

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified August 18 18:04 EDT 2017. Contains 290732 sequences.