login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A274978
Integers of the form m*(m + 6)/7.
32
0, 1, 13, 16, 40, 45, 81, 88, 136, 145, 205, 216, 288, 301, 385, 400, 496, 513, 621, 640, 760, 781, 913, 936, 1080, 1105, 1261, 1288, 1456, 1485, 1665, 1696, 1888, 1921, 2125, 2160, 2376, 2413, 2641, 2680, 2920, 2961, 3213, 3256, 3520, 3565, 3841, 3888, 4176, 4225, 4525, 4576
OFFSET
1,3
COMMENTS
Nonnegative values of m are listed in A047274.
Also, numbers h such that 7*h + 9 is a square.
Equivalently, numbers of the form i*(7*i - 6) with i = 0, 1, -1, 2, -2, 3, -3, ...
Infinitely many squares belong to this sequence.
Generalized 16-gonal (or hexadecagonal) numbers. See the third comment. - Omar E. Pol, Jun 06 2018
Partial sums of A317312. - Omar E. Pol, Jul 28 2018
Exponents in expansion of Product_{n >= 1} (1 + x^(14*n-13))*(1 + x^(14*n-1))*(1 - x^(14*n)) = 1 + x + x^13 + x^16+ x^40 + .... - Peter Bala, Dec 10 2020
FORMULA
O.g.f.: x^2*(1 + 12*x + x^2)/((1 + x)^2*(1 - x)^3).
E.g.f.: (5*(2*x + 1)*exp(-x) + (14*x^2 - 5)*exp(x))/8.
a(n) = (14*(n-1)*n - 5*(2*n-1)*(-1)^n - 5)/8.
a(n) = a(n-1) + 2*a(n-2) - 2*a(n-3) - a(n-4) + a(n-5) for n >= 6. - Wesley Ivan Hurt, Dec 18 2020
Sum_{n>=2} 1/a(n) = (7 + 6*Pi*cot(Pi/7))/36. - Amiram Eldar, Feb 28 2022
EXAMPLE
88 is in the sequence because 88 = 22*(22+6)/7 or also 88 = 4*(7*4-6).
MATHEMATICA
Select[m = Range[0, 200]; m (m + 6)/7, IntegerQ] (* Jean-François Alcover, Jul 21 2016 *)
Select[Table[(n(n+6))/7, {n, 0, 200}], IntegerQ] (* Harvey P. Dale, Sep 20 2022 *)
PROG
(Sage)
def A274978_list(len):
h = lambda m: m*(m+6)/7
return [h(m) for m in (0..len) if h(m) in ZZ]
print(A274978_list(179)) # Peter Luschny, Jul 18 2016
(Magma) [t: m in [0..200] | IsIntegral(t) where t is m*(m+6)/7];
CROSSREFS
Supersequence of A051868.
Cf. A317312.
Cf. sequences of the form m*(m+k)/(k+1): A000290 (k=0), A000217 (k=1), A001082 (k=2), A074377 (k=3), A195162 (k=4), A144065 (k=5), A274978 (k=6), A274979 (k=7), A218864 (k=8).
Sequences of generalized k-gonal numbers: A001318 (k=5), A000217 (k=6), A085787 (k=7), A001082 (k=8), A118277 (k=9), A074377 (k=10), A195160 (k=11), A195162 (k=12), A195313 (k=13), A195818 (k=14), A277082 (k=15), this sequence (k=16), A303305 (k=17), A274979 (k=18), A303813 (k=19), A218864 (k=20), A303298 (k=21), A303299 (k=22), A303303 (k=23), A303814 (k=24), A303304 (k=25), A316724 (k=26), A316725 (k=27), A303812 (k=28), A303815 (k=29), A316729 (k=30).
Sequence in context: A205876 A352664 A056663 * A103230 A217179 A107081
KEYWORD
nonn,easy
AUTHOR
Bruno Berselli, Jul 15 2016
STATUS
approved