login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A274975
Sum of n-th powers of the three roots of x^3-2*x^2-x+1.
9
3, 2, 6, 11, 26, 57, 129, 289, 650, 1460, 3281, 7372, 16565, 37221, 83635, 187926, 422266, 948823, 2131986, 4790529, 10764221, 24186985, 54347662, 122118088, 274396853, 616564132, 1385407029, 3112981337, 6994805571, 15717185450, 35316195134, 79354770147, 178308549978
OFFSET
0,1
COMMENTS
a(n) is x1^n + x2^n + x3^n, where x1, x2, x3 are the roots of the polynomial x^3-2*x^2-x+1.
x1 = 1/(2*cos(Pi/7)),
x2 = 1/(-2*cos(2*Pi/7)),
x3 = 1/(-2*cos(4*Pi/7)).
FORMULA
G.f.: -(x^2+4*x-3)/(x^3-x^2-2*x+1). - Alois P. Heinz, Jul 14 2016
a(0)=3, a(1)=2, a(2)=6; thereafter a(n)=2*a(n-1)+a(n-2)-a(n-3).
a(n) = (2*cos(Pi/7))^(-n) + (-2*cos(2*Pi/7))^(-n) + (-2*cos(4*Pi/7))^(-n).
a(n) = A033304(n-1) for n>0.
MATHEMATICA
CoefficientList[Series[-(x^2 + 4 x - 3)/(x^3 - x^2 - 2 x + 1), {x, 0, 32}], x] (* Michael De Vlieger, Jul 14 2016 *)
PROG
(PARI) Vec(-(x^2+4*x-3)/(x^3-x^2-2*x+1) + O(x^50)) \\ Colin Barker, Aug 02 2016
CROSSREFS
Cf. A096975.
3 followed by terms of A033304.
Sequence in context: A108284 A340733 A095011 * A188621 A175182 A291221
KEYWORD
nonn,easy
AUTHOR
Kai Wang, Jul 14 2016
STATUS
approved