

A274976


Numbers n such that (26*10^n + 31)/3 is prime.


0



0, 1, 2, 3, 4, 7, 9, 57, 98, 122, 123, 249, 304, 318, 339, 374, 390, 476, 619, 1358, 1724, 3351, 5046, 5572, 6685, 9421, 14362, 97353
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,3


COMMENTS

For n>1, numbers n such that the digit 8 followed by n2 occurrences of the digit 6 followed by the digits 77 is prime (see Example section).
a(29) > 10^5.


LINKS

Table of n, a(n) for n=1..28.
Makoto Kamada, Factorization of nearrepdigitrelated numbers.
Makoto Kamada, Search for 86w77.


EXAMPLE

3 is in this sequence because (26*10^3 + 31)/3 = 877 is prime.
Initial terms and primes associated:
a(1) = 0, 19;
a(2) = 1, 97;
a(3) = 2, 877;
a(4) = 3, 8677;
a(5) = 4, 86677, etc.


MATHEMATICA

Select[Range[0, 100000], PrimeQ[(26*10^# + 31)/3] &]


CROSSREFS

Cf. A056654, A268448, A269303, A270339, A270613, A270831, A270890, A270929, A271269.
Sequence in context: A071114 A078696 A256772 * A269729 A098115 A182833
Adjacent sequences: A274973 A274974 A274975 * A274977 A274978 A274979


KEYWORD

nonn,more


AUTHOR

Robert Price, Jul 14 2016


STATUS

approved



