OFFSET
0,3
COMMENTS
Numbers k for which 152*k + 289 is a square. - Bruno Berselli, Jul 10 2018
Partial sums of A317317. - Omar E. Pol, Jul 28 2018
LINKS
Colin Barker, Table of n, a(n) for n = 0..1000
Index entries for linear recurrences with constant coefficients, signature (1,2,-2,-1,1).
FORMULA
G.f.: -(x^2+17*x+1)*x/((x+1)^2*(x-1)^3). - Alois P. Heinz, Jun 23 2018
From Colin Barker, Jun 24 2018: (Start)
a(n) = a(n-1) + 2*a(n-2) - 2*a(n-3) - a(n-4) + a(n-5) for n>4.
a(n) = (19*n^2 + 34*n) / 8 for n even.
a(n) = (19*n^2 + 4*n - 15) / 8 for n odd.
(End)
Sum_{n>=1} 1/a(n) = 38/289 + 2*Pi*cot(2*Pi/19)/17. - Amiram Eldar, Feb 28 2022
MAPLE
a:= n-> (m-> m*(19*m-17)/2)(-ceil(n/2)*(-1)^n):
seq(a(n), n=0..60); # Alois P. Heinz, Jun 23 2018
MATHEMATICA
CoefficientList[Series[-(x^2 + 17 x + 1) x/((x + 1)^2*(x - 1)^3), {x, 0, 55}], x] (* or *)
Array[PolygonalNumber[21, (1 - 2 Boole[EvenQ@ #]) Ceiling[#/2]] &, 56, 0] (* Michael De Vlieger, Jul 10 2018 *)
LinearRecurrence[{1, 2, -2, -1, 1}, {0, 1, 18, 21, 55}, 51] (* Robert G. Wilson v, Jul 28 2018 *)
PROG
(PARI) concat(0, Vec(x*(1 + 17*x + x^2) / ((1 - x)^3*(1 + x)^2) + O(x^60))) \\ Colin Barker, Jun 24 2018
(GAP) a:=[0, 1, 18, 21, 55];; for n in [6..60] do a[n]:=a[n-1]+2*a[n-2]-2*a[n-3]-a[n-4]+a[n-5]; od; a; # Muniru A Asiru, Jul 10 2018
CROSSREFS
Sequences of generalized k-gonal numbers: A001318 (k=5), A000217 (k=6), A085787 (k=7), A001082 (k=8), A118277 (k=9), A074377 (k=10), A195160 (k=11), A195162 (k=12), A195313 (k=13), A195818 (k=14), A277082 (k=15), A274978 (k=16), A303305 (k=17), A274979 (k=18), A303813 (k=19), A218864 (k=20), this sequence (k=21), A303299 (k=22), A303303 (k=23), A303814 (k=24), A303304 (k=25), A316724 (k=26), A316725 (k=27), A303812 (k=28), A303815 (k=29), A316729 (k=30).
KEYWORD
nonn,easy
AUTHOR
Omar E. Pol, Jun 23 2018
STATUS
approved