login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A303303
Generalized 23-gonal (or icositrigonal) numbers: m*(21*m - 19)/2 with m = 0, +1, -1, +2, -2, +3, -3, ...
29
0, 1, 20, 23, 61, 66, 123, 130, 206, 215, 310, 321, 435, 448, 581, 596, 748, 765, 936, 955, 1145, 1166, 1375, 1398, 1626, 1651, 1898, 1925, 2191, 2220, 2505, 2536, 2840, 2873, 3196, 3231, 3573, 3610, 3971, 4010, 4390, 4431, 4830, 4873, 5291, 5336, 5773, 5820, 6276, 6325, 6800, 6851, 7345, 7398, 7911, 7966
OFFSET
0,3
COMMENTS
168*a(n) + 361 is a square. - Bruno Berselli, Jul 10 2018
Partial sums of A317319. - Omar E. Pol, Jul 28 2018
FORMULA
From Colin Barker, Jun 27 2018: (Start)
G.f.: x*(1 + 19*x + x^2) / ((1 - x)^3*(1 + x)^2).
a(n) = n*(21*n + 38) / 8 for n even.
a(n) = (21*n - 17)*(n + 1) / 8 for n odd.
a(n) = a(n-1) + 2*a(n-2) - 2*a(n-3) - a(n-4) + a(n-5) for n>4.
(End)
Sum_{n>=1} 1/a(n) = 42/361 + 2*Pi*cot(2*Pi/21)/19. - Amiram Eldar, Mar 01 2022
MATHEMATICA
CoefficientList[ Series[-x (x^2 + 19x + 1)/((x - 1)^3 (x + 1)^2), {x, 0, 50}], x] (* or *)
LinearRecurrence[{1, 2, -2, -1, 1}, {0, 1, 20, 23, 61}, 51] (* Robert G. Wilson v, Jul 28 2018 *)
PROG
(PARI) concat(0, Vec(x*(1 + 19*x + x^2) / ((1 - x)^3*(1 + x)^2) + O(x^50))) \\ Colin Barker, Jun 27 2018
CROSSREFS
Sequences of generalized k-gonal numbers: A001318 (k=5), A000217 (k=6), A085787 (k=7), A001082 (k=8), A118277 (k=9), A074377 (k=10), A195160 (k=11), A195162 (k=12), A195313 (k=13), A195818 (k=14), A277082 (k=15), A274978 (k=16), A303305 (k=17), A274979 (k=18), A303813 (k=19), A218864 (k=20), A303298 (k=21), A303299 (k=22), this sequence (k=23), A303814 (k=24), A303304 (k=25), A316724 (k=26), A316725 (k=27), A303812 (k=28), A303815 (k=29), A316729 (k=30).
Sequence in context: A268490 A153717 A358424 * A045563 A013339 A199360
KEYWORD
nonn,easy
AUTHOR
Omar E. Pol, Jun 24 2018
STATUS
approved