login
A303302
a(n) = 34*n^2.
1
0, 34, 136, 306, 544, 850, 1224, 1666, 2176, 2754, 3400, 4114, 4896, 5746, 6664, 7650, 8704, 9826, 11016, 12274, 13600, 14994, 16456, 17986, 19584, 21250, 22984, 24786, 26656, 28594, 30600, 32674, 34816, 37026, 39304, 41650, 44064, 46546, 49096, 51714, 54400, 57154, 59976, 62866, 65824, 68850, 71944
OFFSET
0,2
COMMENTS
Sequence found by reading the line from 0, in the direction 0, 34, ..., in the square spiral whose vertices are the generalized 19-gonal numbers A303813.
FORMULA
a(n) = 34*A000290(n) = 17*A001105(n) = 2*A244630(n).
G.f.: 34*x*(1 + x)/(1 - x)^3. - Vincenzo Librandi, Jun 07 2018
From Elmo R. Oliveira, Dec 02 2024: (Start)
E.g.f.: 34*x*(1 + x)*exp(x).
a(n) = A005843(n)*A008599(n).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 2. (End)
MATHEMATICA
Table[34 n^2, {n, 0, 40}]
LinearRecurrence[{3, -3, 1}, {0, 34, 136}, 50] (* Harvey P. Dale, Jul 23 2018 *)
PROG
(PARI) a(n) = 34*n^2;
(PARI) concat(0, Vec(34*x*(1 + x) / (1 - x)^3 + O(x^40))) \\ Colin Barker, Jun 12 2018
(Magma) [34*n^2: n in [0..50]]; // Vincenzo Librandi Jun 07 2018
CROSSREFS
Cf. similar sequences of the type k*n^2: A000290 (k=1), A001105 (k=2), A033428 (k=3), A016742 (k=4), A033429 (k=5), A033581 (k=6), A033582 (k=7), A139098 (k=8), A016766 (k=9), A033583 (k=10), A033584 (k=11), A135453 (k=12), A152742 (k=13), A144555 (k=14), A064761 (k=15), A016802 (k=16), A244630 (k=17), A195321 (k=18), A244631 (k=19), A195322 (k=20), A064762 (k=21), A195323 (k=22), A244632 (k=23), A195824 (k=24), A016850 (k=25), A244633 (k=26), A244634 (k=27), A064763 (k=28), A244635 (k=29), A244636 (k=30), A244082 (k=32), this sequence (k=34), A016910 (k=36), A016982 (k=49), A017066 (k=64), A017162 (k=81), A017270 (k=100), A017390 (k=121), A017522 (k=144).
Sequence in context: A044366 A044747 A172001 * A158062 A141127 A153465
KEYWORD
nonn,easy
AUTHOR
Omar E. Pol, May 13 2018
STATUS
approved