login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A244636
a(n) = 30*n^2.
7
0, 30, 120, 270, 480, 750, 1080, 1470, 1920, 2430, 3000, 3630, 4320, 5070, 5880, 6750, 7680, 8670, 9720, 10830, 12000, 13230, 14520, 15870, 17280, 18750, 20280, 21870, 23520, 25230, 27000, 28830, 30720, 32670, 34680, 36750, 38880, 41070, 43320, 45630, 48000, 50430
OFFSET
0,2
COMMENTS
Sequence found by reading the line from 0, in the direction 0, 30, ..., in the square spiral whose vertices are the generalized 17-gonal numbers. - Omar E. Pol, Jul 03 2014
FORMULA
G.f.: 30*x*(1 + x)/(1 - x)^3. [corrected by Bruno Berselli, Jul 03 2014]
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 2.
a(n) = 30*A000290(n) = 15*A001105(n) = 10*A033428(n) = 6*A033429(n) = 5*A033581(n) = 3*A033583(n) = 2*A064761(n). - Omar E. Pol, Jul 03 2014
From Elmo R. Oliveira, Dec 02 2024: (Start)
E.g.f.: 30*x*(1 + x)*exp(x).
a(n) = n*A249674(n) = A330451(3*n). (End)
MAPLE
A244636:=n->30*n^2: seq(A244636(n), n=0..50); # Wesley Ivan Hurt, Jul 04 2014
MATHEMATICA
Table[30 n^2, {n, 0, 40}]
CoefficientList[Series[30x (1+x)/(1-x)^3, {x, 0, 50}], x] (* or *) LinearRecurrence[ {3, -3, 1}, {0, 30, 120}, 50] (* Harvey P. Dale, Dec 02 2021 *)
PROG
(Magma) [30*n^2: n in [0..40]];
(PARI) a(n)=30*n^2 \\ Charles R Greathouse IV, Jun 17 2017
CROSSREFS
Cf. similar sequences listed in A244630.
Sequence in context: A232775 A246766 A112955 * A290391 A277451 A042764
KEYWORD
nonn,easy
AUTHOR
Vincenzo Librandi, Jul 03 2014
STATUS
approved