OFFSET
0,2
COMMENTS
LINKS
Colin Barker, Table of n, a(n) for n = 0..1000
Index entries for linear recurrences with constant coefficients, signature (2,-1,1,-2,1).
FORMULA
G.f.: x*(1 + x)*(3 + 4*x + 3*x^2) / ((1 - x)^3*(1 + x + x^2)). - Colin Barker, Mar 02 2020
a(n) = a(-n) = 2*a(n-1) - a(n-2) + a(n-3) - 2*a(n-4) + a(n-5).
a(n) = (2/9)*(-1 + 15*n^2 + cos(2*n*Pi/3)). - Stefano Spezia, Mar 02 2020
a(3*n) = 30*n^2.
MATHEMATICA
Table[2/9(-1+15n^2+Cos[2n*Pi/3]), {n, 0, 39}] (* Stefano Spezia, Mar 02 2020 *)
PROG
(PARI) concat(0, Vec(x*(1 + x)*(3 + 4*x + 3*x^2) / ((1 - x)^3*(1 + x + x^2)) + O(x^40))) \\ Colin Barker, Mar 02 2020
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Paul Curtz, Mar 01 2020
STATUS
approved