OFFSET
0,2
COMMENTS
Sequence found by reading the line from 0, in the direction 0, 13, ..., and the parallel line from 3, in the direction 3, 30, ..., in the square spiral whose edges have length A195019 and whose vertices are the numbers A195020. - Omar E. Pol, Sep 09 2011
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..1000
Leo Tavares, Illustration: Crysta-gons
Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
FORMULA
a(n) = C(7*n,2)/7, n >= 0. - Zerinvary Lajos, Jan 02 2007
a(n) = 7*n + a(n-1) - 4 for n > 0, a(0)=0. - Vincenzo Librandi, Aug 04 2010
a(n) = A174738(7*n+2). - Philippe Deléham, Mar 26 2013
G.f.: x*(3 + 4*x)/(1 - x)^3. - R. J. Mathar, Aug 04 2016
a(n) = (1/5) * Sum_{i=n..(6*n-1)} i. - Wesley Ivan Hurt, Dec 04 2016
E.g.f.: (1/2)*x*(7*x + 6)*exp(x). - G. C. Greubel, Aug 19 2017
MAPLE
[seq(binomial(7*n, 2)/7, n=0..37)]; # Zerinvary Lajos, Jan 02 2007
MATHEMATICA
Table[n (7*n - 1)/2, {n, 0, 40}] (* Zerinvary Lajos, Jul 10 2009 *)
PROG
(PARI) a(n)=n*(7*n-1)/2 \\ Charles R Greathouse IV, Mar 08 2013
(Magma) [n*(7*n-1)/2 : n in [0..50]]; // Wesley Ivan Hurt, Dec 04 2016
KEYWORD
nonn,easy
AUTHOR
STATUS
approved