login
A022261
Gaussian binomial coefficients [ n,10 ] for q = 9.
1
1, 3922632451, 13848340811466703906, 48352505889707776105242586606, 168620463706718874134703442098874261321, 587953159580355890974683988909617412559591458771, 2050069762911386221695293524269464063566943065726695501256
OFFSET
10,2
REFERENCES
F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, Elsevier-North Holland, 1978, p. 698.
LINKS
FORMULA
a(n) = Product_{i=1..10} (9^(n-i+1)-1)/(9^i-1), by definition. - Vincenzo Librandi, Aug 05 2016
MATHEMATICA
Table[QBinomial[n, 10, 9], {n, 10, 20}] (* Vincenzo Librandi, Aug 05 2016 *)
PROG
(Sage) [gaussian_binomial(n, 10, 9) for n in range(10, 17)] # Zerinvary Lajos, May 27 2009
(Magma) r:=10; q:=9; [&*[(1-q^(n-i+1))/(1-q^i): i in [1..r]]: n in [r..20]]; // Vincenzo Librandi, Aug 05 2016
CROSSREFS
Sequence in context: A233599 A159463 A034615 * A183801 A034647 A234385
KEYWORD
nonn
AUTHOR
EXTENSIONS
Offset changed by Vincenzo Librandi, Aug 05 2016
STATUS
approved