The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A022259 Gaussian binomial coefficients [ n,8 ] for q = 9. 1
 1, 48427561, 2110705802810605, 90983770072735012966405, 3917150001348391097251303957615, 168623318873839155489174680568370759015, 7258694620170400715835032365617891585605600635, 312463067466939934510699888848526630609825159414503235 (list; graph; refs; listen; history; text; internal format)
 OFFSET 8,2 REFERENCES F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, Elsevier-North Holland, 1978, p. 698. LINKS Vincenzo Librandi, Table of n, a(n) for n = 8..140 FORMULA a(n) = Product_{i=1..8} (9^(n-i+1)-1)/(9^i-1), by definition. - Vincenzo Librandi, Aug 04 2016 G.f.: x^8/((1 - x)*(1 - 9*x)*(1 - 81*x)*(1 - 729*x)*(1 - 6561*x)*(1 - 59049*x)*(1 - 531441*x)*(1 - 4782969*x)*(1 - 43046721*x)). - Ilya Gutkovskiy, Aug 04 2016 MATHEMATICA QBinomial[Range[8, 20], 8, 9] (* Harvey P. Dale, Jun 21 2012 *) Table[QBinomial[n, 8, 9], {n, 8, 20}] (* Vincenzo Librandi, Aug 04 2016 *) PROG (Sage) [gaussian_binomial(n, 8, 9) for n in range(8, 16)] # Zerinvary Lajos, May 25 2009 (MAGMA) r:=8; q:=9; [&*[(1-q^(n-i+1))/(1-q^i): i in [1..r]]: n in [r..20]]; // Vincenzo Librandi, Aug 04 2016 CROSSREFS Sequence in context: A121491 A300568 A210334 * A290501 A016823 A016859 Adjacent sequences:  A022256 A022257 A022258 * A022260 A022261 A022262 KEYWORD nonn AUTHOR EXTENSIONS Offset corrected by Harvey P. Dale, Jun 21 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 8 17:01 EST 2021. Contains 349596 sequences. (Running on oeis4.)