login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A022262
Gaussian binomial coefficients [ n,11 ] for q = 9.
1
1, 35303692060, 1121715605764106708446, 35248976794718684386485952344220, 1106318862415031509992507967997199980871301, 34718046121166753868579146371116506562228516029840080, 1089491124906108051165135239699867397777196296355089299912829976
OFFSET
11,2
REFERENCES
F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, Elsevier-North Holland, 1978, p. 698.
LINKS
FORMULA
a(n) = Product_{i=1..11} (9^(n-i+1)-1)/(9^i-1), by definition. - Vincenzo Librandi, Aug 05 2016
MATHEMATICA
Table[QBinomial[n, 11, 9], {n, 11, 20}] (* Vincenzo Librandi, Aug 05 2016 *)
PROG
(Sage) [gaussian_binomial(n, 11, 9) for n in range(11, 18)] # Zerinvary Lajos, May 28 2009
(Magma) r:=11; q:=9; [&*[(1-q^(n-i+1))/(1-q^i): i in [1..r]]: n in [r..20]]; // Vincenzo Librandi, Aug 05 2016
CROSSREFS
Sequence in context: A099600 A115498 A115502 * A375646 A233849 A370486
KEYWORD
nonn
AUTHOR
EXTENSIONS
Offset changed by Vincenzo Librandi, Aug 05 2016
STATUS
approved