login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Gaussian binomial coefficients [ n,11 ] for q = 9.
1

%I #14 Sep 08 2022 08:44:46

%S 1,35303692060,1121715605764106708446,

%T 35248976794718684386485952344220,

%U 1106318862415031509992507967997199980871301,34718046121166753868579146371116506562228516029840080,1089491124906108051165135239699867397777196296355089299912829976

%N Gaussian binomial coefficients [ n,11 ] for q = 9.

%D F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, Elsevier-North Holland, 1978, p. 698.

%H Vincenzo Librandi, <a href="/A022262/b022262.txt">Table of n, a(n) for n = 11..100</a>

%F a(n) = Product_{i=1..11} (9^(n-i+1)-1)/(9^i-1), by definition. - _Vincenzo Librandi_, Aug 05 2016

%t Table[QBinomial[n, 11, 9], {n, 11, 20}] (* _Vincenzo Librandi_, Aug 05 2016 *)

%o (Sage) [gaussian_binomial(n,11,9) for n in range(11,18)] # _Zerinvary Lajos_, May 28 2009

%o (Magma) r:=11; q:=9; [&*[(1-q^(n-i+1))/(1-q^i): i in [1..r]]: n in [r..20]]; // _Vincenzo Librandi_, Aug 05 2016

%K nonn

%O 11,2

%A _N. J. A. Sloane_.

%E Offset changed by _Vincenzo Librandi_, Aug 05 2016