login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A022263
Gaussian binomial coefficients [ n,12 ] for q = 9.
2
1, 317733228541, 90858964067210376612667, 25696504083440779881815469635549047, 7258558056330718241144285557911444544132154908, 2050065905416034207242060732309202881550943087590159038828, 579000252913277034724666671128579290474420179812795955722564434314244
OFFSET
12,2
REFERENCES
F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, Elsevier-North Holland, 1978, p. 698.
LINKS
FORMULA
a(n) = Product_{i=1..12} (9^(n-i+1)-1)/(9^i-1), by definition. - Vincenzo Librandi, Aug 04 2016
MATHEMATICA
Table[QBinomial[n, 12, 9], {n, 12, 30}] (* Vincenzo Librandi, Aug 04 2016 *)
PROG
(Sage) [gaussian_binomial(n, 12, 9) for n in range(12, 19)] # Zerinvary Lajos, May 28 2009
(Magma) r:=12; q:=9; [&*[(1-q^(n-i+1))/(1-q^i): i in [1..r]]: n in [r..20]]; // Vincenzo Librandi, Aug 04 2016
CROSSREFS
Sequence in context: A172785 A172847 A354071 * A216907 A186911 A340155
KEYWORD
nonn
AUTHOR
EXTENSIONS
Offset changed by Vincenzo Librandi, Aug 04 2016
STATUS
approved