login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A174738
Partial sums of floor(n/7).
17
0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 7, 9, 11, 13, 15, 17, 19, 21, 24, 27, 30, 33, 36, 39, 42, 46, 50, 54, 58, 62, 66, 70, 75, 80, 85, 90, 95, 100, 105, 111, 117, 123, 129, 135, 141, 147, 154, 161, 168, 175, 182, 189, 196, 204, 212, 220, 228, 236
OFFSET
0,9
COMMENTS
Apart from the initial zeros, the same as A011867.
LINKS
Mircea Merca, Inequalities and Identities Involving Sums of Integer Functions, J. Integer Sequences, Vol. 14 (2011), Article 11.9.1.
FORMULA
a(n) = round(n*(n-5)/14).
a(n) = floor((n-2)*(n-3)/14).
a(n) = ceiling((n+1)*(n-6)/14).
a(n) = a(n-7) + n - 6, n > 6.
a(n) = +2*a(n-1) - a(n-2) + a(n-7) - 2*a(n-8) + a(n-9). - R. J. Mathar, Nov 30 2010
G.f.: x^7/( (1 + x + x^2 + x^3 + x^4 + x^5 + x^6)*(1-x)^3 ). - R. J. Mathar, Nov 30 2010
a(7n) = A001106(n), a(7n+1) = A218471(n), a(7n+2) = A022264(n), a(7n+3) = A022265(n), a(7n+4) = A186029(n), a(7n+5) = A179986(n), a(7n+6) = A024966(n). - Philippe Deléham, Mar 26 2013
EXAMPLE
a(9) = floor(0/7) + floor(1/7) + floor(2/7) + floor(3/7) + floor(4/7) + floor(5/7) + floor(6/7) + floor(7/7) + floor(8/7) + floor(9/7) = 3.
MAPLE
A174738 := proc(n) round(n*(n-5)/14) ; end proc:
seq(A174738(n), n=0..30) ;
MATHEMATICA
Table[Floor[(n - 2)*(n - 3)/14], {n, 0, 60}] (* G. C. Greubel, Dec 13 2016 *)
PROG
(Magma) [Round(n*(n-5)/14): n in [0..60]]; // Vincenzo Librandi, Jun 22 2011
(PARI) a(n)=(n-2)*(n-3)\14 \\ Charles R Greathouse IV, Sep 24 2015
(Sage) [floor((n-2)*(n-3)/14) for n in (0..60)] # G. C. Greubel, Aug 31 2019
(GAP) List([0..60], n-> Int((n-2)*(n-3)/14)); # G. C. Greubel, Aug 31 2019
KEYWORD
nonn,easy
AUTHOR
Mircea Merca, Nov 30 2010
STATUS
approved