The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A179986 Second 9-gonal (or nonagonal) numbers: a(n) = n*(7*n+5)/2. 18
 0, 6, 19, 39, 66, 100, 141, 189, 244, 306, 375, 451, 534, 624, 721, 825, 936, 1054, 1179, 1311, 1450, 1596, 1749, 1909, 2076, 2250, 2431, 2619, 2814, 3016, 3225, 3441, 3664, 3894, 4131, 4375, 4626, 4884, 5149, 5421, 5700, 5986, 6279, 6579, 6886 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS This sequence is a bisection of A118277 (even part). Sequence found by reading the line from 0, in the direction 0, 19... and the line from 6, in the direction 6, 39,..., in the square spiral whose vertices are the generalized 9-gonal numbers A118277. - Omar E. Pol, Jul 24 2012 The early part of this sequence is a strikingly close approximation to the early part of A100752. - Peter Munn, Nov 14 2019 LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..1000 Index entries for linear recurrences with constant coefficients, signature (3,-3,1). FORMULA G.f.: x*(6 + x)/(1 - x)^3. a(n) = Sum_{i=0..(n-1)} A017053(i) for n>0. a(-n) = A001106(n). Sum_{i=0..n} (a(n)+i)^2 = ( Sum_{i=(n+1)..2*n} (a(n)+i)^2 ) + 21*A000217(n)^2 for n>0. a(n) = a(n-1)+7*n-1 for n>0, with a(0)=0. - Vincenzo Librandi, Feb 05 2011 a(0)=0, a(1)=6, a(2)=19; for n>2, a(n) = 3*a(n-1)-3*a(n-2)+a(n-3). - Harvey P. Dale, Aug 19 2011 a(n) = A174738(7n+5). - Philippe Deléham, Mar 26 2013 a(n) = A001477(n) + 2*A000290(n) + 3*A000217(n). - J. M. Bergot, Apr 25 2014 a(n) = A055998(4*n) - A055998(3*n). - Bruno Berselli, Sep 23 2016 E.g.f.: (x/2)*(12 + 7*x)*exp(x). - G. C. Greubel, Aug 19 2017 MATHEMATICA f[n_] := n (7 n + 5)/2; f[Range[0, 60]] (* Vladimir Joseph Stephan Orlovsky, Feb 05 2011*) LinearRecurrence[{3, -3, 1}, {0, 6, 19}, 60] (* or *) Array[(#(7# + 5))/2&, 60, 0] (* Harvey P. Dale, Aug 19 2011 *) CoefficientList[Series[x (6 + x)/(1 - x)^3, {x, 0, 60}], x] (* Vincenzo Librandi, Oct 15 2012 *) PROG (MAGMA) [n*(7*n+5)/2: n in [0..50]]; // Bruno Berselli, Sep 23 2016 (MAGMA) I:=[0, 6, 19]; [n le 3 select I[n] else 3*Self(n-1) -3*Self(n-2) +Self(n-3): n in [1..60]]; // Vincenzo Librandi, Oct 15 2012 (PARI) a(n)=n*(7*n+5)/2 \\ Charles R Greathouse IV, Sep 24 2015 CROSSREFS Cf. second k-gonal numbers: A005449 (k=5), A014105 (k=6), A147875 (k=7), A045944 (k=8), this sequence (k=9), A033954 (k=10), A062728 (k=11), A135705 (k=12). Cf. A001106, A022264, A022265, A024966, A055998, A100752, A174738, A186029, A218471. Sequence in context: A010899 A090381 A106398 * A054567 A096957 A272811 Adjacent sequences:  A179983 A179984 A179985 * A179987 A179988 A179989 KEYWORD nonn,easy AUTHOR Bruno Berselli, Jan 13 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 22 07:26 EDT 2021. Contains 343163 sequences. (Running on oeis4.)