OFFSET
0,2
COMMENTS
Also, second 12-gonal (or dodecagonal) numbers. Identity for the numbers b(n)=n*(h*n+h-2)/2 (see Crossrefs): Sum_{i=0..n} (b(n)+i)^2 = (Sum_{i=n+1..2*n} (b(n)+i)^2) + h*(h-4)*A000217(n)^2 for n>0. - Bruno Berselli, Jan 15 2011
Sequence found by reading the line from 0, in the direction 0, 28, ..., and the line from 9, in the direction 9, 57, ..., in the square spiral whose vertices are the generalized 12-gonal numbers A195162. - Omar E. Pol, Jul 24 2012
Bisection of A195162. - Omar E. Pol, Aug 04 2012
LINKS
Ivan Panchenko, Table of n, a(n) for n = 0..1000
L. Hogben, Choice and Chance by Cardpack and Chessboard, Vol. 1, Max Parrish and Co, London, 1950, p. 36.
Leo Tavares, Illustration: Diamond Clipped Stars
Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
FORMULA
From R. J. Mathar, Mar 06 2008: (Start)
O.g.f.: x*(9+x)/(1-x)^3.
a(n) = n*(5*n+4). (End)
a(n) = a(n-1) + 10*n - 1 (with a(0)=0). - Vincenzo Librandi, Nov 24 2009
a(n) = Sum_{i=0..n-1} A017377(i) for n>0. - Bruno Berselli, Jan 15 2011
a(n) = A131242(10n+8). - Philippe Deléham, Mar 27 2013
Sum_{n>=1} 1/a(n) = 5/16 + sqrt(1 + 2/sqrt(5))*Pi/8 - 5*log(5)/16 - sqrt(5)*log((1 + sqrt(5))/2)/8 = 0.2155517745488486003038... . - Vaclav Kotesovec, Apr 27 2016
From G. C. Greubel, Oct 29 2016: (Start)
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
E.g.f.: x*(9 + 5*x)*exp(x). (End)
MATHEMATICA
LinearRecurrence[{3, -3, 1}, {0, 9, 28}, 50] (* or *) Table[5*n^2 + 4*n, {n, 0, 50}] (* G. C. Greubel, Oct 29 2016 *)
Table[10 Binomial[n, 2]+9n, {n, 0, 60}] (* Harvey P. Dale, Jun 14 2023 *)
PROG
(PARI) a(n) = 10*binomial(n, 2) + 9*n \\ Charles R Greathouse IV, Jun 11 2015
(Magma) [n*(5*n+4): n in [0..50]]; // G. C. Greubel, Jul 04 2019
(Sage) [n*(5*n+4) for n in (0..50)] # G. C. Greubel, Jul 04 2019
(GAP) List([0..50], n-> n*(5*n+4)) # G. C. Greubel, Jul 04 2019
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Mar 04 2008
STATUS
approved