login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A321559
a(n) = Sum_{d divides n} (-1)^(d + n/d) * d^3.
3
1, -9, 28, -57, 126, -252, 344, -441, 757, -1134, 1332, -1596, 2198, -3096, 3528, -3513, 4914, -6813, 6860, -7182, 9632, -11988, 12168, -12348, 15751, -19782, 20440, -19608, 24390, -31752, 29792, -28089, 37296, -44226, 43344, -43149, 50654
OFFSET
1,2
FORMULA
G.f.: Sum_{k>=1} (-1)^(k+1)*k^3*x^k/(1 + x^k). - Ilya Gutkovskiy, Nov 27 2018
From Peter Bala, Jan 29 2022: (Start)
Multiplicative with a(2^k) = - 3*(2^(3*k+1) + 5)/7 for k >= 1 and a(p^k) = (p^(3*k+3) - 1)/(p^3 - 1) for odd prime p.
n^3 = (-1)^(n+1)*Sum_{d divides n} A067856(n/d)*a(d). (End)
MATHEMATICA
a[n_] := DivisorSum[n, (-1)^(# + n/#)*#^3 &]; Array[a, 50] (* Amiram Eldar, Nov 27 2018 *)
PROG
(PARI) apply( A321559(n)=sumdiv(n, d, (-1)^(n\d-d)*d^3), [1..30]) \\ M. F. Hasler, Nov 26 2018
(Magma) m:=50; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!( (&+[(-1)^(k+1)*k^3*x^k/(1 + x^k) : k in [1..2*m]]) )); // G. C. Greubel, Nov 28 2018
(Sage) s=(sum((-1)^(k+1)*k^3*x^k/(1 + x^k) for k in (1..50))).series(x, 50); a = s.coefficients(x, sparse=False); a[1:] # G. C. Greubel, Nov 28 2018
CROSSREFS
Column k=3 of A322083.
Cf. A321543 - A321565, A321807 - A321836 for similar sequences.
Sequence in context: A063155 A366863 A135705 * A041359 A034126 A034677
KEYWORD
sign,mult
AUTHOR
N. J. A. Sloane, Nov 23 2018
STATUS
approved