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We investigate a twisted version of the Dirichlet product of arithmetical
functions and show it has similar properties to the standard Dirichlet product.
We give some examples of sequences in the OEIS that can be described in terms
of this twisted Dirichlet product. In Section 6 we brie�y mention further twisted
versions of the Dirichlet product.

1. The signed Dirichlet product Given two arithmetical functions
f(n) and g(n) (functions from the positive integers to the complex numbers)
their Dirichlet product (or Dirichlet convolution) f ∗ g is the arithmetical
function de�ned by the divisor sum

(f ∗ g) (n) =
∑
d|n

f(d)g
(n
d

)
=

∑
ab=n

f(a)g(b), (1)

where the latter sum is over all positive integers a and b such that ab = n.

An equivalent de�nition can be stated in terms of products of formal
Dirichlet series. The Dirichlet product f ∗ g is the arithmetical function
determined by the formula

∑
n≥1

(f ∗ g) (n)

ns
=

∑
n≥1

f(n)

ns

∑
n≥1

g(n)

ns

 . (2)

Dirichlet convolution is commutative, associative and distributes over
addition. See, for example, [Apo, Chapter 2].

De�nition We de�ne the signed Dirichlet product f ? g of f and g to be the
arithmetical function determined by the formula

∑
n≥1

(−1)n+1 (f ? g) (n)

ns
=

∑
n≥1

(−1)n+1f(n)

ns

∑
n≥1

(−1)n+1g(n)

ns

 . (3)

Comparing the coe�cients of n−s on both sides of the equation gives

(−1)n+1(f ? g)(n) =
∑
d|n

(−1)d+
n
d f(d)g

(n
d

)
, (4)

leading to

(f ? g) (n) =
∑
ab=n

(−1)(1+a)(1+b)f(a)g(b), (5)
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where the sum is over all positive integers a and b such that ab = n.

Equation (5) can also be written as

(f ? g)(n) =
∑

odd d|n

f(d)g
(n
d

)
−

∑
even d|n

(−1)
n
d f(d)g

(n
d

)
. (6)

Let s(n) = (−1)n+1. It will be convenient to associate with an arithmetical
function f(n) the function f̄(n) given by

f̄(n) = s(n)f(n).

Clearly,
=

f (n) = f(n). Our �rst result relates the Dirichlet product and the
signed Dirichlet product.

Theorem 1.1 Let f(n) and g(n) be arithmetical functions. Then

(f ? g) (n) =
(
f̄ ∗ ḡ

)
(n).

PROOF. Immediate by comparing (2) and (3).�

By means of Theorem 1.1, the algebraic properties of the ? product can be
deduced from the corresponding properties of the Dirichlet product. In what
follows we closely parallel the treatment of the Dirichlet product in Apostol
[Apo, Chapter 2].

Theorem 1.2 The signed Dirichlet product operation is commutative and

associative and distributes over addition. That is, for any arithmetical

functions f, g and h, we have

f ? g = g ? f

(f ? g) ? h = f ? (g ? h)

f ? (g + h) = f ? g + f ? h.

PROOF. The commutativity and the distributivity property are both evident
from the de�nition (3) of the signed Dirichlet product. As for associativity, we
have by Theorem 1.1

(f ? g) ? h =
(
f̄ ∗ ḡ

)
? h

=

((
f̄ ∗ ḡ

)
∗ h̄
)

=
((
f̄ ∗ ḡ

)
∗ h̄
)
. (7)
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Again by Theorem 1.1 we have

f ? (g ? h) =
(
f̄ ∗ (g ? h)

)
=

(
f̄ ∗
(
ḡ ∗ h̄

))
=

(
f̄ ∗
(
ḡ ∗ h̄

))
. (8)

The associativity of the ? product now follows by comparing (7) and (8) and
using the associativity of the Dirichlet product *.�

2. Dirichlet inverses The multiplicative identity (multiplicative unit) for
both the Dirichlet product and the signed Dirichlet product is the arithmetical
function ε given by

ε(n) =

{
1 if n = 1,

0 if n > 1.

Clearly, ε̄(n) = ε(n). Apostol [Apo, Theorem 2.8] shows that if f is an
arithmetical function with f(1) 6= 0 there is a unique arithmetical function
f−1, called the Dirichlet inverse of f , such that

f ∗ f−1 = f−1 ∗ f = ε.

Theorem 2.1 If f is an arithmetical function with f(1) 6= 0, then there is a

unique arithmetical function f 〈−1〉 such that

f ? f 〈−1〉 = f 〈−1〉 ? f = ε,

given by

f 〈−1〉 =
(
f̄
)−1

.

We refer to f 〈−1〉 as the signed Dirichlet inverse of f.

PROOF. Suppose g is an arithmetic function such that f ? g = ε. By Theorem

1.1, we have
(
f̄ ∗ ḡ

)
= ε, or equivalently, f̄ ∗ ḡ = ε. So ḡ is the unique Dirichlet

inverse of f̄ and hence g =
(
f̄
)−1

, and is determined uniquely.�

3, Multiplicative functions and the signed Dirichlet

product

A multiplicative function is a nonzero arithmetic function f with the
property f(nm) = f(n)f(m) whenever gcd(n,m) = 1. A multiplicative
function f is called completely mutiplicative if f(nm) = f(n)f(m) for all n,m.
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The Dirichlet product of two multiplicative functions is multiplicative [Apo,
Theorem 2.14] and the Dirichlet inverse of a multiplicative function is
multiplicative [Apo, Theorem 2.16]. Next we prove the corresponding results
for the signed Dirichlet product. First we need the following simple result.

Lemma 3.1 If f(n) is a multiplicative function then f̄(n) is a multiplicative

function.

PROOF. We show the arithmetic function s(n) := (−1)n+1 is multiplicative.
The result will then follow since f̄(n) = s(n)f(n), and the product of two
multiplicative functions is again multiplicative. Let n and m be coprime
natural numbers. Then

s(n)s(m) = (−1)n+1+m+1

= (−1)n+m+nm+1(−1)nm+1

= (−1)(n+1)(m+1)s(nm)

= s(nm),

since when n and m are coprime at least one of n and m must be odd and
hence (−1)(n+1)(m+1) = 1.�

Theorem 3.1 If f and g are multiplicative then the signed Dirichlet product

function f ? g is also multiplicative.

PROOF. By Theorem 1.1, the signed Dirichlet product function

f ? g =
(
f̄ ∗ ḡ

)
. By the Lemma, both functions f̄ and ḡ are multiplicative.

Hence their Dirichlet product f̄ ∗ ḡ is multiplicative [Apo, Theorem 2.14].

Another application of the Lemma shows that the function
(
f̄ ∗ ḡ

)
is

multiplicative, and hence f ? g is mutiplicative.�

Theorem 3.2 If both g and f ? g are multiplicative then f is multiplicative.

PROOF. Since g is multiplicative, so is ḡ by the Lemma. By Theorem 1.1 and

the assumption, f ? g =
(
f̄ ∗ ḡ

)
is multiplicative. Hence by the Lemma, f̄ ∗ ḡ is

multiplcative. Thus both ḡ and the Dirichlet product f̄ ∗ ḡ are multiplicative.
It follows from [Apo, Theorem 2.15] that f̄ is multiplicative and hence, by a
�nal application of the Lemma, f is multiplicative.�

Theorem 3.3 If f is a multiplicative function then the signed Dirichlet inverse

f 〈−1〉 is also multiplicative.

PROOF. Immediate from Theorem 3.2, since both f and f ? f 〈−1〉 = ε are
multiplicative.�
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4. Lambert type series Given an arithmetical function a(n), consider
the following variant of a Lambert series:

L(q) =

∞∑
n=1

a(n)
qn

1 + (−q)n
.

Formally expanding the denominators gives the formal power series expansion

L(q) =
∑

m odd

a(m)

∞∑
k=1

qmk +
∑

m even

a(m)

∞∑
k=1

(−1)k+1qmk

=

∞∑
n=1

b(n)qn.

Comparing the coe�cients of qn on both sides of the equation gives the
coe�cient b(n) of the power series L(q) as

b(n) =
∑

odd d | n

a(d) +
∑

even d | n

(−1)
n
d +1a(d). (9)

By (6), we see that the arithmetic function b(n) is simply the signed Dirichlet
product a ? 1. One immediate consequence by Theorem 3.1, is that if a(n) is
multiplicative then so is b(n).

Here are some examples of sequences of the form a ? 1 already in the OEIS
database. 1(n) denotes the constant function 1(n) = 1 (completely
multiplicative): Id(n) denotes the identity function Id(n) = n (completely
multiplicative). More generally, Idk(n) denotes the kth power function de�ned
by Idk(n) = nk (also completely multiplicative).

Example 1. φ ? 1, where φ denotes the Euler totient function. The expansion
of the Lambert series associated with the function φ begins

∞∑
n=1

φ(n)
qn

1 + (−q)n
= q + 2q2 + 3q3 + 2q4 + 5q5 + 6q6 + 7q7 + 2q8 + · · ·

This is the ordinary generating function for A259445. Since the Euler
totient function is multiplicative, the coe�cients b(n) = (φ ? 1) (n) of the
power series also form a multiplicative function. The value of b(n) is thus
determined by the values the function b takes at the prime powers. Using the

well-known result
∑
d|n

φ(d) = n, we see from (9) with a = φ that b(n) = n when

n is odd, so in particular b(pn) = pn for odd primes p. An easy induction
argument using (9) shows that b(2n) = 2 for n = 1, 2, 3,. . . .
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Example 2. 1?1. The expansion of the Lambert series begins

∞∑
n=1

qn

1 + (−q)n
= q + 2q2 + 2q3 + q4 + 2q5 + 4q6 + 2q7 + 3q9 + · · · .

This is the ordinary generating function for (−1)n+1 A228441. The power
series coe�cients are given by the formula

b(n) = (1 ? 1)(n) =
∑
d|n

(−1)(1+d)(1+n
d ). The arithmetic function b(n) is

multiplicative by Theorem 3.1.

Example 3. Id?1. The expansion of the Lambert series begins

∞∑
n=1

nqn

1 + (−q)n
= q + 3q2 + 4q3 + 3q4 + 6q5 + 12q6 + 8q7 + 3q8 + · · · .

This is the ordinary generating function for A046897. The power series

coe�cients are given by b(n) = (Id ? 1)(n) =
∑
d|n

(−1)(1+d)(1+n
d )d. Again the

arithmetic function b(n) is multiplicative by Theorem 3.1.

More generally, the signed Dirichlet products Idk ? 1 for k = 2 through k = 9
are given by (−1)n+1A321558(n) through (−1)n+1A321565(n). For the cases
k = 10, 11, 12 see A321807 , A321808 and A321809.

5. Möbius inversion We now consider the analogue of the Möbius
inversion formula for the signed Dirichlet product. Recall the Möbius function
µ(n) is the Dirichlet inverse of the constant function 1.

µ ∗ 1 = ε.

Given arithmetic functions f and g, the Möbius inversion formula states

f = g ∗ 1 ⇐⇒ g = f ∗ µ.

In terms of divisor sums this is equivalent to the inversion formula

f(n) =
∑
d|n

g(d) ⇐⇒ g(n) =
∑
d|n

µ
(n
d

)
f(d).

We denote the signed Dirichlet inverse of the constant function 1 by µ̃(n):

µ̃× 1 = ε

or
µ̃ = 1〈−1〉.
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De�ne the alternating zeta function ζA(s) as the (formal) Dirichlet series

ζA(s) =

∞∑
n=1

(−1)n+1

ns
. It follows from (3) applied to the identity µ̃ ? 1 = ε that

the Dirichlet series associated with the function (−1)n+1µ̃(n) is the reciprocal
of the alternating zeta function, that is,

∞∑
n=1

(−1)n+1µ̃(n)

ns
=

1

ζA(s)
.

Using ζA(s) =

∞∑
n=1

(−1)n+1

ns
=

(
1−

2

2s

)
ζ(s) and

1

ζ(s)
=

∞∑
n=1

µ(n)

ns
we see that

∞∑
n=1

(−1)n+1µ̃(n)

ns
=

(
1 +

2

2s
+

4

22s
+ · · ·

) ∞∑
m=1

µ(m)

ms
.

Equating the coe�cients of n−s on each side, we �nd that if 2k is the largest
power of 2 dividing n then

µ̃(n) = (−1)n+1
(
µ(n) + 2µ

(n
2

)
+ · · ·+ 2kµ

( n
2k

))
. (10)

The function µ̃(n) is multiplicative by Theorem 3.3 with µ̃(1) = 1. Hence the
values of µ̃(n) are determined by the values µ̃ takes on prime powers. If n is
odd it follows from (10) that µ̃(n) = µ(n), so for odd prime p, µ̃(pm) = µ(pm),
which has the value −1 when m = 1, otherwise equals 0.

In the case that n is even we can use the fact that µ(n) = 0 if n is not square
free to shorten the sum in (10) to two terms:

µ̃(n) = (−1)n+1

(
2k−1µ

(
n

2k−1

)
+ 2kµ

(
n

2k

))
= (−1)n+1

(
2k−1µ

(
2
n

2k

)
+ 2kµ

( n
2k

))
= (−1)n+12k−1µ

(
n

2k

)
,

since the Möbius function µ is multiplicative. In particular, we get for m ≥ 1,
µ̃(2m) = −2m−1.

The table below lists the �rst few values of µ̃(n).

n 1 2 3 4 5 6 7 8 9 10 11 12 . . .
µ̃(n) 1 −1 −1 −2 −1 1 −1 −4 0 1 −1 2 . . .
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This is the sequence (−1)n+1A067856(n).

For the signed Dirichlet product ?, the analogue of Möbius inversion reads

f = g ? 1⇐⇒ g = f ? µ̃,

for arithmetic functions f, g. In terms of divisor sums this is equivalent to the
inversion formula

f(n) =
∑
d|n

(−1)(1+d)(1+n
d )g(d)⇐⇒ g(n) =

∑
d|n

(−1)(1+d)(1+n
d )µ̃

(n
d

)
f(d),

(11)
or equivalently,

(−1)n+1f(n) =
∑
d|n

(−1)(d+
n
d )g(d)⇐⇒ (−1)n+1g(n) =

∑
d|n

(−1)(d+
n
d )µ̃

(n
d

)
f(d).

(12)

6. Further twisted Dirichlet products Let now s(n) be a
multiplicative arithmetic function with s(1) = 1 and satisfying the property
s(n)2 = 1, so that s(n) ∈ {1,−1}. In the above we worked with the choice
s(n) = (−1)n+1. Let f, g be arithmetic functions. De�ne the Dirichlet product

f ?
s
g of f and g twisted by the function s to be the arithmetic function

determined from

∑
n≥1

s(n)

f ?
s
g

 (n)

ns
=

∑
n≥1

s(n)f(n)

ns

∑
n≥1

s(n)g(n)

ns

 . (13)

This is equivalent to the divisor sum

s(n)

f ?
s
g

 (n) =
∑
d|n

s(d)f(d)s
(n
d

)
g
(n
d

)
. (14)

De�ne f̄(n) = s(n)f(n) so that ¯̄f(n) = f(n). It is easy to see that the Dirichlet
product twisted by the function s is related to the standard Dirichlet product
by f ?

s
g

 (n) =
(
f̄ ∗ ḡ

)
(n). (15)

Exactly as in Section 2 and Section 3, it can be shown that the twisted
Dirichlet product is commutative, associative and distributes over addition:
the twisted product of multiplicative functions is multiplicative and a
multiplicative arithmetic function f has a multiplicative inverse with respect
to the twisted Dirichlet product (the function ε is still the multiplicative unit).
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There is also a twisted verson of Möbius inversion. De�ne the twisted
Möbius function µs to be the inverse of the constant function 1 under the
twisted Dirichlet product:

µs ?
s

1 = ε.

Then for arithmetic functions f and g the following inversion formula holds:

s(n)f(n) =
∑
d|n

s(d)s
(n
d

)
g(d)⇐⇒ s(n)g(n) =

∑
d|n

s(d)s
(n
d

)
µs

(n
d

)
f(d).

(16)
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